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Let C^O in (3). Then

3 3
; q ]

qp+1\N
= the same expression with P and N interchanged.

I am grateful to Dr R. P. Agarwal for his suggestions during the preparation of
this note.
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1. Solution of Lx — b. If L is a non-singular lower triangular matrix with any
number of rows and columns, and x, b are column vectors, the equation

Lx = b

can be solved by a process resembling long division, or, more exactly, resembling the
division of polynomials by the method of detached coefficients. This is best shown
by an example: "1
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In this process the successive 'divisors' are the successive columns of L. The first
' division' corresponds to the determination of xx from the first equation, and the
elimination of xx from the others.
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A check on the accuracy of the arithmetic can be obtained by noting that the scalar
product of x and the vector, found by summing the columns of L, should be equal to the
sum of the elements of 6. In the case of the example just given, we have

(6, 9, 6).(3, - 1 , - i ) = 6.

The equation Ux = y, where U is an upper triangular matrix, can be solved in a very
similar way, as also can the equations x'L = y', x'U — y'\ in the latter cases, it is
necessary to work with the rows of the matrices L and U instead of the columns.

2. Resolution of square matrix. The long-division algorithm can also be used to
express a general non-singular square matrix as the product of a lower triangular and
an upper triangular matrix in the manner required for Choleski's method of solving
a set of linear algebraic equations. Take, for example, the matrix:
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where the blank places have to be filled in. First, 'divide' the second column of A by
the first column of L:

9 1 - 2 ) - 2 5 2 (-0-222
- 2 -0-222 0-444

5-222 1-556

We can now fill the blank spaces in the second columns of L and U, obtaining
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9 0
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Now, 'divide' the third column of A by the first and second columns of L:

9 1 - 2 ) 1 - 3 7 ( 0-111
1 0-111 -0-222

5-222 1-556) -3-111 7-222 (-0-596
-3-111 -0-927

8-149

If we now fill in the blanks in the third columns of L and U we obtain

9 - 2 1

1 5 - 3

- 2 2 7

9 0 0

1 5-222 0

- 2 1-556 8-149.

1 -0-222 0-111

0 1 -0-596

0 0 1
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When the matrix has been factorized in this way, the solution of the equations
Ax = b can be obtained (according to Choleski's method) by solving first the set of
equations Ly = b, and then the set Ux = y, using the procedure described in § 1.

The methods described in this and the preceding section are not limited in
application to matrices with three rows and columns only.

3. Solution of LX = B. The method of § 1 may easily be extended to obtain the
unknown square matrix X from the equation

I t is only necessary to regard the equation as split up into the set of equations

where xt and bt are the ith columns of X and B respectively. The equation UX = B
may be similarly treated.

If B is taken to be the unit matrix / , a method is obtained for inverting an upper
triangular or lower triangular matrix, and hence for inverting any non-singular matrix
which has been split up into a product of a pair of such matrices.

4. Solution of ordinary differential equations.* The application of the methods dis-
cussed here to the solution of ordinary differential equations by means of standard
recurrence formulae will be illustrated by taking as an example the following equation:

dx%+ xy = 0.

To the accuracy with which d2yjdx2 may be replaced by S2y/h2 (where h is the interval
in x) this equation is equivalent to the recurrence equation

Vi - (2 - h2xi+1) yi+1 + yi+2 = 0.

If h is taken to be 0- 2, the values of y0, ylt y2,..., yn are given by

"1 -1-992 1 0 0 0 ~]\yo~\ I"0'

0 1 -1-984 1 0 0 . yx 0

0 0 1 -1-976 1 0 . y% 0

Note that the matrix elements are given exactly by the three decimal places used. The
matrix on the left-hand side has n + 1 rows and n + 3 columns, where n is the number of
intervals into which the range of integration is divided. If the boundary conditions
are such that the values of y at the two ends of the range are given, the methods
described in this paper are of no assistance. If, however, y0 and yx are given, the
solution may be found by dividing the right-hand side by the various columns of the
matrix in turn. The work is set out in Example 1. Since y0 and yx are given, the first
two terms of the quotient are known, and the division proper does not start until the
third term is reached. In the example the integration is carried as far as x = 2-0, but
could be carried further if desired; it is convenient to regard the matrices as having an
indefinite number of rows, as many being used as are required in a particular case.

* Cf. Tustin (1).
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The check described in § 1 may be applied in this case, but, since the division does not
terminate, the remainders after division must be taken into account. The details of the
check, applied to Example 1, are as follows:

Sum of columns of matrix = (1, -0-992, 0-016, 0-024, 0-032, 0-040,

0-048, 0-056, 0-064, 0-072, 0-080)

(yo,yv ...,yw) = (0-35503, 0-40628, ...,0-34010, 0-22592)

Scalar product of above vectors = 0-13224

x> • A ft .v • • { 0-09367

Remainders after division =
-0-00001

Sum of elements of vector on right-hand side = 0
-0-00001

The difference is here sufficiently small to be ascribed to rounding-off errors.
When x = 2-0, the integration gives y = 0-22592; this may be compared with the

true value y = 0-227407 given in (2). If greater accuracy is required, a smaller interval
in x may be used, or, alternatively, the method of Fox and Goodwin (3) may be applied.
This consists in estimating the truncation error from the approximate solution obtained
in the manner described above, and repeating the calculation with this estimate sub-
tracted from the vector on the right-hand side. In the present example, the truncation
error is given approximately by - x^d*y{+1 and was found to be (0-00006,0-00005, etc.);
one step of integration was performed in a backward direction in order that the value
oiSiy1 might be obtainable. The working of the second integration is given in Example 2.
The value oft/ for x = 2-0 is now 0-22741, in much better agreement with the true value.

The method is also applicable if the equation includes a term in dy/dx and if the
right-hand side is a function of x. If the equation is

the corresponding recurrence relation is

From this the corresponding matrix equation may be readily derived. The estimate
of the truncation error required for refining the solution can be obtained by evaluating
-MhP(xi+i)(83yi+i + S3yi+i) + Siyi+i} (see Method VI of Fox and Goodwin (3)). The
method can also be applied to equations of higher order than the second.
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