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1. A“Fourierkernel” means here a function K (x) which gives risetoaformula |

fl2)= J:K(w)du f :K(ut) Fit)de (1-1)
of the Fourier type. Thus

2 2 2 1
- “lsi ] .
»./(w) COS Z, A/(‘") sinzx, ztJ, (), oLz’
are Fourier kernels.* If K (z) is a Fourier kernel, A is real, and a positive, then .

1 1
5K(E), MAADEK (), ab K (az)

are Fourier kernels. _
The resultant, or Faltung, M (z) of K (x) and L (x) is defined by

M (2)= J K (at) L (t)d. (1-2)
0
If M (x) is the resultant of K (x) and L (z), then

lu (l)
z \x
is the resultant of L (z) and K (z).

There are various formal reasons which suggest that the resultant of two
Fourier kernels is a Fourier kernel. For example, we may argue as follows.
Replacing K by M in the integral on the right of (1-1), and substltutmg from
(1-2), we obtain

ffM (xu) M (ut)f (t)dudt= f f ffK (xuy) K (utz) L (y) L (2) f(t) dudtdydz;
and the substitution ¢ =v/z, y =2w gives
fJL (2) L (zw) dzdwf K (xzwu) K(uv)f(g) dudv =f L (2) L(zw) f (xw)dzdw = f ().

The argument is naturally of a purely formal type, the multiple integrals being

* Further examples are given by Hardy and Titchmarsh (2) and Watson (6).
PSP XXXI, X '
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2 G. H. Harpy

divergent, and the inversions and substitutions impossible to justify, even in the

simplest standard cases.*
We can also appeal to the idea which underlies the recent work of Watson and

of Titchmarsh and myself. If
Ic(s):f 1K (x) dx
[}

is the Mellin transform of a Fourier kernel K (z), then
k(s)k(1-8)=1;
and this is also a sufficient condition that K (z) should be a Fourier kernel. Now
- the Mellin transform of M (z) is

m(8)=joﬁ—ldxjoK(xt)L(t)dt=f0L(t)dtf0ﬁ—1K(u)dx

=jwt“’L(t)dtfwu8-1K(u)du:k(s)l(l—s);
0 0

so that m(@)m(l—-s)=k(s)k(1-s8)l(s)l(1—-8)=1.
This argument also is formal, but the transformations are a little nearer to reality
than those of the first.

It is plain in any case that we must be prepadred for a very liberal interpretation
of (1-1) and (1-2). Thus

= J cosxt costdt
mTJo

is generally summable (C, 1) to 0, but diverges to infinity when z = 1. The integral
is never convergent. Similarly
-2—f cosxtsintdt:z——l— c,n, (1-3)

7)o 7 1—2?
except for 2 =1, when the value is 1/27. On the other hand

A&

w2 ) o (1 —2%2%) (1—-1¢2)
converges to 0 in general (as a Cauchy principal value), but diverges to infinity
when z= 1. And a similar freedom of interpretation is necessary in (1-1).

2. It is easy to reduce all this to order by means of Watson’s theory.f We
start from a function K, (z) with the properties (i) that -1 K, () is L2 in (0, c0),
and (ii) that S

K, (ax) K, (bx .
f J(——)—z—lﬂ(—) dz = Min (a, d) (2-1)
0 X

* I have been familiar with these formal ideas for a good many years, but cannot say
whence I derived them. Possibly from Ramanujan; but I can refer to nothing in his published
work, and it is likely enough that the ideas are much older.

+ Watson(8). Considerablesimplificationsin the theory have been made by Plancherel (3)
and Titchmarsh (4).
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The resultant of two Fourier kernels 3
if @ and b are positive. In these circumstances, if f(z) is L?, and g () is defined by

[oway= 50 (22)
0 0

then g (z) is also L? and the relationship is reciprocal. We call f(x) and g (z)
¢ K-transforms” of one another. If F (z) and G (z) are also K-transforms of one
another, then

J “f(z) F (@) dw= I "4 (@) G (z)de. (2:3)
0 0

This is ¢ Parseval’s Theorem . In all this there is no direct reference to a function
K (z), but, if K, (x) is the integral of K (z), then the transformation is that en-
visaged formally in § 1. '

Let us now suppose that K, (z) and L, () satisfy Watson’s conditions, and

define M, (z) b
He f “u, (1) dy= f Kl Ly (= g, (2-4)
o \¥ o ¢ ¢
If K,, L,, M, are the integrals of K, L, M, then two differentiations reduce (2-4)
formally to (1-2).
Since M, (1/z) is the L-transform of 21 K, (z),

o A2 )
f ‘éx)dx=f M%(l)dz<oo.
o % 0 z

Also M, (ajx), M, (b/x) are the L-transforms of -1 K, (ax), z7* K, (bz); and hence,
by Parseval’s Theowem,

[ ) 1 [, (), (2) - [N g i,

0 x? 0 x

Hence M, satisfies the same conditions as K, and L,, and there are formulae in
M, similar to (2-2) and its reciprocal. When K, L,, M, are integrals, then K, L, M
are Fourier kernels; and it is natural to call the M -transformation 3 the resultant
of the K- and L-transformations K and L.

If S, (z) is0forz < 1,and 1 forz 2 1, and K, (z) =8, (%), then the transforma-

tion ig 1./1 1 41
s@=11(3) 1@=30(5)-
We call this transformation 8. If K, = L, then
J'le (5) dy= J'ooKl (t) I:;l (xt) dt ~Min (1, )
)

0

and MIESI' IfL1=Sl, then

z (1 ® K, (1) r (1)
M, |- 1dy= A ai= | K, )de,
Jo l(y) y J.ll.t 2 o '\t

and M, = K, . Thus the resultant of K and K is §, and the resultant of K and S
is K.

I-2
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ExXAMPLES

3. The interest of the examples which follow is mainly formal, and I allow
myself, as in §1, a certain latitude of expression, speaking in terms of K, L, M
when precise expression demands a return to K,, L,, M.

(1) The equation (1-3) indicates that the resultant of the cosine and sine
transformations is that defined by the kernel

2 1
7 1—22"
Here M (x)-—log 2_*_:’

and is not (in the strict sense) an integral. The M transformation is
_2( 0
g(x)= wj -

'If we suppose f (x) even, and make some trivial transformations, we obtain

29(e)=2 [ e

the conjugate or “Hilbert transform”’ of f(z).
If we call this transformation C then the resultant of K and C is defined by

M (z)= f X T
or, regarding K (x) as even, by
M (z)= f i} e a,

Thus the conjugate of a Fourier kernel is a Fourier kernel.

(2) The function '
L'1 @)=z {=m<]), L, (2)=0 (z=1)

satisfies Watson’s conditions.* We conclude that, if K (x) is a Fourier kernel, then
0 1 z
M(z)=f K (zt)dL, (t)=f K(xt)dt—K(w)=£J K (v)du—K (z)
0 0 0

is a Fourier kernel. Or again, taking another of Watson’s examples, viz.
L,(z)=0 (x<1), L,(x)=logz—1 (x=1),

we find that f wg{ii) du— K (z)

is a Fourier kernel.
* Watson (6, p. 197).
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(3) Since* J J (xt)J,,_l( )‘-?_x—* Ty, (223),
the resultant of ¢ J, (t) and t-¥J, (1/t) is J,,_, (2t}).
cos _, cos dt 2
i — = ) ¥ +
(4) Since fo sin Zsin ( ) T= K, (2z}) F Y, (221),1

the functions just written are the resultants of

2 cos E) Lcos 1)
m/sin "’ w /zsin \z
(the two cosines or the two sines going together). We conclude that the functions
2
SEACEES AB)
\ .

are Fourier kernels. The first of them is the kernel which occurs in the theory of
Dirichlet’s divisor problem. The functions may be generated differently. Thus
®Jo{2 (xt)}} 2udy(2xtu) , w2 N
ﬂfo 2 _ﬂfowdu_yo(zx )+ Ky (22,

go that this last kernel is the conjugate of J,(2xt).

(6) The resultant of J,(2z1) and cosz is —sinz, and that of J (2:::*) and sinz
is cosz.

(6) It is easily proved that

5 (C,1),

o . +1
x*f 0], (xt) J_,, (t)dt = — 281“’”' x"
0 ki3

provided that x + 1, while when 2= 1 the integral diverges like
cos um, J‘ © dL.
m

This divergence indicates that, when we form the resultant of z+J () and
ztJ_, (x), there will be a discontinuity in M, (z) at z=1. In fact, in this case,

2s8in Z it gy 2sin un (*trtide
o (0= - 280 [(EER o ), M @)= - 2T MR

¢ >
- +cosur (x21).

The inversion formulae are

2sm;m f () :zz f(t)dt+cos um },,.f (i)

and the reciprocal formula. The transformation is a generalizatién of C, to which
it reduces when p = — 4, the extra term then disappearing.

gx)=—

* ‘The formula is easily deducible from one due to Bateman. See Hardy (1). _
1 Here, and in (7}, K. is used as in Watson (5).
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6 - G. H. HarpY
(7) If we form the resultant M (z) of

A/ (7”2—) cosz, J;(2zt)=n"tr¥sin 2z},

. 2—t _ /1
and then replace it by — M (_) ,

we obtain the Fourier kernel
(2x)} {cos (x — §m) Jy (z) +8in (x — §7) J_; (z)}.
The analysis involves the calculation of the integrals

o0
f ey = Lat 2 K_, (2¢2),
0

o]
f e~ cos dax?dr=2-Ynate-22* I _, (202),
0

o0
f cos z# cos 4ax?dr = 2~ ¥ ot cos (202 — § ) J_3 (2a2).
0

In all of these « is positive.
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