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1. A " Fourier kernel'' means here a function K(x) which gives rise to a formula

f(x)= [°K{xn)du [°K(ut)f{t)dt (1-1)
Jo Jo

of the Fourier type. Thus

J{l)0OaX> J{l)sinX- *iJAx)> 11-*' -
are Fourier kernels.* If K (x) is a Fourier kernel, A is real, and a positive, then

are Fourier kernels.
The resultant, or Faltung, M (x) of K (x) and L (x) is denned by

M(x) = [°K(xt)L(t)dt. (1-2)
Jo

If M (x) is the resultant of K (x) and L (x), then

x \xj
is the resultant of L (x) and K (x).

There are various formal reasons which suggest that the resultant of two
Fourier kernels is a Fourier kernel. For example, we may argue as follows.
Replacing K by M in the integral on the right of (1-1), and substituting from
(l-2), we obtain

f [M ((XU) M (ut)f{t) dudt =[[[[K {xuy) K (ulz) L (y) L (z)f{t) dudtdydz;

and the substitution t = vjz, y = zw gives

f [L{Z) L{zw)dzdw [[K(XZV)U)K(uv)f(-\dudv= f ^L(z)L(zw)f(xw)dzdw=f(x).

The argument is naturally of a purely formal type, the multiple integrals being
• Further examples are given by Hardy and Titchmarsh (2) and Watson (6).
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2 G. H. HARDY

divergent, and the inversions and substitutions impossible to justify, even in the
simplest standard cases.*

We can also appeal to the idea which underlies the recent work of Watson and
of Titchmarsh and myself. If

k(s)= fV
Jo

is the Mellin transform of a Fourier kernel K (x), then

and this is also a sufficient condition that K {x) should be a Fourier kernel. Now
the Mellin transform of M (x) is

m(*)= ('°x'-1dx [mK(xt)L(t)dt= [™L(t)dt f"a?-1 K(xt)dx
Jo Jo Jo Jo

= [°t-8L(t)dt ("V-1 K (u)du = k
Jo Jo

so that m(a)m(l — s) = k(s)k(l — s)l(s)l(l— «) = 1.
This argument also is formal, but the transformations are a little nearer to reality
than those of the first.

It is plain in any case that we must be prepared for a very liberal interpretation
of (11) and (1-2). Thus

cosxtcostdt

is generally summable (C, 1) to 0, but diverges to infinity when x = 1. The integral
is never convergent. Similarly

2 1 (C,l), (1-3)2 p
TTJ (l 0 w l-x

except for x=l, when the value is 1/2TT. On the other hand
4 r°° dt

[\-x2t2){\-t2)
converges to 0 in general (as a Cauchy principal value), but diverges to infinity
when x=l. And a similar freedom of interpretation is necessary in (1-1).

2. It is easy to reduce all this to order by means of Watson's theory, f We
start from a function Kt (x) with the properties (i) that x~xKy {x) is L2 in (0, oo),
and (ii) that .x „ . „ ., .

I —-———- dx = ̂ \Iin (a, b) (2* 1)
Jo x

* I have been familiar with these fonnal ideas for a good many years, but cannot say
whence I derived them. Possibly from Ramanujnii; but T can refer to nothing in his published
work, and it is likely enough that the ideas arc much older.

f Watson(6). ConsiderablesimplificationsinthotlieoryhavebocnmadebyPlancherel(3)
and Titchmarsh (4).
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The resultant of two Fourier kernels 3

if a and b are positive. In these circumstances, if/ (a;) is L2, and g (z) is defined by

\X9
Jo

9(y)dy= r^f^Wdt, (2-2)
o J o *

then (j(a;) is also L* and the relationship is reciprocal. We call/(a) and g(x)
'' X-transforms'' of one another. If F (x) and G (x) are also ^-transforms of one
another, then .„ -„

f(x)F(x)dx=\ g(x)G(x)dx. (2-3)
Jo Jo

This is ' ' Parseval's Theorem ". In all this there is no direct reference to a function
K (x), but, if Kx (x) is the integral of K (x), then the transformation is that en-
visaged formally in § 1.

Let us now suppose that Kx (x) and Lx (x) satisfy Watson's conditions, and

define Mx{x) by rK (t\L lxt\

I$!*¥*? (2-4)If Kx, Lx,Mxaxe the integrals of K, L, M, then two differentiations reduce (2-4)
formally to (1-2).

Since Mx (l/x) is the i-tranaform of x~xKx (x),

o z* Jo
Also M x (o/x), Mx (b/x) are the L-transforms of a;-1 Kx (ax), x~l Kx (bx); and hence,
by Parseval's Thecem,

Hence Mx satisfies the same conditions as Kx and Lx, and there are formulae in
M x similar to (2-2) and its reciprocal. When KX,LX, Mx are integrals, then K,L,M
are Fourier kernels; and it is natural to call the M-transformation M the resultant
of the K- and //-transformations K and L.

If Sx (x) is 0 for x < 1, and 1 for x E 1, and Kx (x) = Sx (x), then the transforma-
tion is 1

We call this transformation S. If Kx = Lx then

and Mx = Sx. If Lx=Sx, then

and MX = KX. Thus the resultant of K and K is S, and the resultant of K and S
iaK.
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4 G. H. HARDY

EXAMPLES

3. The interest of the examples which follow is mainly formal, and I allow
myself, as in § 1, a certain latitude of expression, speaking in terms of K, L, M
when precise expression demands a return to Kx, Lx, Mx.

(1) The equation (1-3) indicates that the resultant of the cosine and sine
transformations is that defined by the kernel

2 1
nl-z2'

Here M1{x) = -log

and is not (in the strict sense) an integral. The M transformation is

If we suppose/(a;) even, and make some trivial transformations, we obtain

W
the conjugate or "Hilbert transform" off(z).

If we call this transformation C then the resultant of K and C is defined by

or, regarding K (x) as even, by

Thus the conjugate of a Fourier kernel is a Fourier kernel.
(2) The function

Lx (x) = x \x>s 1), Ly (x) = 0 (x > 1)

satisfies Watson's conditions.* We conclude that, if K {x) is a Fourier kernel, then

M (x)= rK(xt)dL1(t)= f K(xt)dt-K[x) = - I*K(u)du-K{x)
Jo Jo s jo

is a Fourier kernel. Or again, taking another of Watson's examples, viz.

Ll(x) = O

we find that f™—^ du-K (x)

is a Fourier kernel.
* Wateon (6, p. 197).
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The resultant of two Fourier kernels

(3) Since* J ^ Jv(xt) Jv_x \tj| = *-* Jiv_x(2a;*),

the resultant of «* Jv(<) and «-* Jv (l/«) is J , ^ (2<»).

the functions just written axe the resultants of

//2\cos / /2\ l-cos/ l \
V\77-/sin ' /J \TT) xsin\x)

(the two cosines or the two sines going together). We conclude that the functions

are Fourier kernels. The first of them is the kernel which occurs in the theory of
Dirichlet's divisor problem. The functions may be generated differently. Thus

so that this last kernel is the conjugate of JQ (2x*).
(5) The resultant of Jo (2a;*) and cosx is — sin x, and that of Jo (2a;*) and sinx

is cos a;.
(6) It is easily proved that

provided that x +1, while when x= 1 the integral diverges like

^ ^ Vat.
v J

This divergence indicates that, when we form the resultant of a;* J^ (a;) and
a;* J (x), there will be a discontinuity in M1 (x) at x = 1. In fact, in this case,

X<1), M1{x)=

The inversion formulae are

9(*)-

and the reciprocal formula. The transformation is a generahzation of C, to which
it reduces when p = — \, the extra term then disappearing.

• The formula ia easily dcducible from one due to Bateman. See Hardy ( 1 ) - ^
t Here, and in (7), Ki is used as in Watson (5).
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6 G. H. HARDY

(7) If we form the resultant M {x) of

/ { —J cosa;, Ji(2xi)

and then replace it by — M ( — I,

we obtain the Fourier kernel
(2a;)* {cos (x -J-TT) Jt (x) + sin (x - \TT) J_j (x)}.

The analysis involves the calculation of the integrals

J0

In all of these a is positive.

_i (2a2),

e-*4 cos 4ax2 dx = 2-* mx* e~2at 7_t (2a2),

cos re4 cos 4tax*dx = 2-*7ra* cos (2a2 - \TT) J _ J (2a2).

r
J 0

'00
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