
J. Fluid Mech. (2021), vol. 924, A44, doi:10.1017/jfm.2021.662

On the determination of vortex ring vorticity
using Lagrangian particles

O. Outrata1, M. Pavelka1, J. Hron1, M. La Mantia1,†, J.I. Polanco2

and G. Krstulovic2

1Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
2Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Boulevard de
l’Observatoire CS 34229, F-06304 Nice CEDEX 4, France

(Received 18 March 2021; revised 14 June 2021; accepted 15 July 2021)

Particles are a widespread tool for obtaining information from fluid flows. When Eulerian
data are unavailable, they may be employed to estimate flow fields or to identify
coherent flow structures. Here we numerically examine the possibility of using particles
to capture the dynamics of isolated vortex rings propagating in a quiescent fluid. The
analysis is performed starting from numerical simulations of the Navier–Stokes and
the Hall–Vinen–Bekarevich–Khalatnikov equations, respectively describing the dynamics
of a Newtonian fluid and a finite-temperature superfluid. The flow-induced positions
and velocities of particles suspended in the fluid are specifically used to compute the
Lagrangian pseudovorticity field, a proxy for the Eulerian vorticity field recently employed
in the context of superfluid 4He experiments. We show that, when calculated from
ideal Lagrangian tracers or from particles with low inertia, the pseudovorticity field
can be accurately used to estimate the propagation velocity and the growth of isolated
vortex rings, although the quantitative reconstruction of the corresponding vorticity fields
remains challenging. On the other hand, particles with high inertia tend to preferentially
sample specific flow regions, resulting in biased pseudovorticity fields that pollute the
estimation of the vortex ring properties. Overall, this work neatly demonstrates that the
Lagrangian pseudovorticity is a valuable tool for estimating the strength of macroscopic
vortical structures in the absence of Eulerian data, which is, for example, the case for
superfluid 4He experiments.

Key words: vortex dynamics, particle/fluid flow, quantum fluids

1. Introduction

The accurate and well-resolved measurement in space and time of fluid flows represents
one of the main ongoing challenges in experimental fluid dynamics. A number of methods
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have been developed to capture the evolution of velocity fields and other relevant quantities
in laboratory flows. A common approach is to visualize the motion of relatively small
particles advected by the flow of interest, from which properties of the latter can be inferred
(see e.g. Raffel et al. 2018). Various techniques can then be employed to quantitatively
process the obtained images, the choice mainly depending on the features to be
investigated.

The most popular tools are particle image velocimetry (PIV), which allows one to
access instantaneous flows fields, i.e. Eulerian data, and particle tracking velocimetry
(PTV), which is a Lagrangian technique, focusing on the temporal dynamics of the
visualized particles. In principle, both methods can be used to gather complementary
information on the same flow but, in practice, this is not always possible. Leaving aside
for a moment the important roles played by particle size and inertia, addressed below, the
main limiting factor is the particle number density, discussed, for example, by Nobach &
Bodenschatz (2009). Specifically, if the number of particles per unit area is smaller than
about 0.01 pixel−2, significant errors occur in PIV measurements. It then follows that, if
one cannot seed the flow of interest with enough particles, PTV is the only choice to get
quantitative information from the collected images.

An exemplary case is represented by superfluid 4He, which is also known as He II (see
e.g. Barenghi, Skrbek & Sreenivasan 2014; Mongiovì, Jou & Sciacca 2018). The cryogenic
flows of this unique liquid are routinely visualized and several PTV studies have been
reported to date – see Švančara et al. (2021) for a recent example. However, at a given
time, one can usually identify the positions of about 100 particles within a 1 Mpixel image,
each particle having an apparent size of a few pixels. Consequently, the visualization data
presently collected in He II do not match the quality of the PIV data obtained in water or
air, i.e. the former data are more suitable for PTV than for PIV, at least if one has in mind
quantitative studies.

The observed behaviour is related to the available experimental techniques, which do not
allow one to seed the flow of interest with a relatively large number of particles, at a given
time. The density of the liquid is equal to about 145 kg m−3 (Donnelly & Barenghi 1998)
and it is consequently challenging to employ neutrally buoyant particles, as discussed, for
example, by Švančara et al. (2018). Indeed, the mass density of the flow-probing particles
should match that of the liquid but this is yet to be achieved for visualization experiments in
He II. It follows that the particles routinely used – made of solid hydrogen or deuterium –
disappear from the field of view after some time, of the order of minutes. Additionally,
particles are usually injected into the liquid and, before taking measurements, one must
wait for the injection flow to disappear. Then, as already said, one is left with about 100
particles that can be tracked for some time, of the order of seconds (the particle size is
usually of the order of micrometres).

To illustrate these facts, we display in figure 1 two images obtained from experimental
data discussed by Švančara, Pavelka & La Mantia (2020). Macroscopic vortex rings
propagating in superfluid 4He were studied using the PTV technique, i.e. solid deuterium
particles were dispersed in the liquid and illuminated by a planar laser sheet. The
ring-induced motions of the particles were collected by a digital camera, in a plane
approximately parallel to the ring propagation direction, that is, in a plane approximately
corresponding to one of the ring symmetry planes. The white regions correspond to
particles reflecting incoming light and the images were obtained by superimposing
hundreds of frames, i.e. the white regions can be viewed as preliminary indications of
the tracks followed by the particles (heavier than the fluid in this case). Figure 1(a)
corresponds to the superposition of movie frames in the laboratory coordinate system,
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1 cm

(a)

(b)

Figure 1. Visualization of particle trajectories induced by a vortex ring in superfluid 4He at 1.50 K, with
Reynolds number Re ≈ 105; see Švančara et al. (2020) for experimental details. The white regions correspond
to particles reflecting incoming light and the images were obtained from averaging the light intensity reflected
by the particles over hundreds of movie frames. (a) The panel is 25 mm wide and 22 mm high; the nozzle
ejecting the fluid parcel is located at the bottom centre of the image and the vortex ring moves upward.
(b) The panel displays (to scale) the same light intensity values as (a) in the coordinate system moving with
the vortex ring, where the latter time-dependent position and velocity were computed as discussed by Švančara
et al. (2020).

whereas, in figure 1(b), the white regions have been centred in the reference system moving
with the vortex ring.

We clearly appreciate the emergence of holes, which would not be observed for perfect
tracers distributed uniformly through the experimental domain. Indeed, even for relatively
small particles, when their action on the flow can be neglected, particle inertia might lead
to the decoupling of the particle trajectories from the flow streamlines and, in particular,
to preferential concentration (see e.g. Maxey 1987; Balachandar & Eaton 2010).

Additionally, in comparison with typical PIV data, very few particles are seen in figure 1,
that is, these data cannot be employed for a robust estimate of Eulerian quantities, such
as velocity and vorticity fields. Indeed, in PTV experiments, one does not usually have
access to the vorticity field because the latter requires a very large number of particles,
vorticity being a small-scale quantity that can present sharp variations in time and space.
Nevertheless, having access to the vorticity field – or a proxy thereof – can be of great
interest for the description of laboratory flows, e.g. for quantitative comparisons between
particle trajectories obtained in different experimental conditions.

This research route was specifically followed by Švančara et al. (2020) in their PTV
study on the propagation of macroscopic vortex rings in He II. The ring-induced motions
of the particles were employed to calculate the Lagrangian pseudovorticity field – a proxy
for the Eulerian vorticity field, which can be used to quantitatively measure the strength
of the generated vortex rings and which can also provide information on the size, position
and velocity of these objects.

Additionally, Švančara et al. (2020) have shown that, in conditions yet to be met in
experiments, the Lagrangian pseudovorticity θ is equal to half of the the Eulerian vorticity
ω. The present work further clarifies the relation between θ and ω, especially in conditions
closer to those encountered in typical experiments. We not only consider in the following
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how particle concentration affects this relation but also take into account the role of
particle inertia.

To this end, we numerically study the motion of particles induced by vortex rings in two
different settings. In the first part of the work, we investigate the behaviour of an isolated
vortex ring propagating in a Newtonian fluid using the finite element method (FEM)
(Brezzi & Fortin 1991) with the incremental pressure correction scheme (Guermond,
Minev & Shen 2006). We then compute the Lagrangian pseudovorticity field from the
positions and velocities of fluid particles (tracers) advected by the obtained Eulerian
flow fields, as a function of experimentally relevant parameters, such as the number of
flow-probing particles and their spatial distribution.

Secondly, we investigate the effect of particle inertia on the relation between
pseudovorticity and vorticity, in the specific case of a vortex ring propagating
in a superfluid. For this, we perform direct numerical simulations of the
Hall–Vinen–Bekarevich–Khalatnikov (HVBK) model, which is often employed to
describe the large-scale hydrodynamics of He II. Indeed, the dynamics of relatively small
spherical particles in flows of superfluid 4He has been recently investigated within this
theoretical framework (Polanco & Krstulovic 2020).

In summary, the results presented below reinforce the view that the Lagrangian
pseudovorticity can be used to quantitatively estimate the strength of relatively large
vortical structures in the absence of Eulerian data, which is specifically the case of
experiments in He II. We confirm that the magnitude of θ can be appreciably smaller
than that of ω, consistent with previous analytical and experimental estimates (Švančara
et al. 2020). We also show that, in order to get a closer quantitative agreement
between the vorticity and pseudovorticity trends, larger particle concentrations should be
employed compared with those commonly used in experiments. Furthermore, our results
demonstrate that the Lagrangian pseudovorticity can be used to resolve accurately general
features of the observed ring dynamics. Such features include the ring time-dependent
position and propagation velocity, especially in the case of tracers and particles with
sufficiently low inertia. However, we also report that, at present, θ does not seem suitable
for capturing the fine details of the vortex ring structure, that is, for reconstructing the
corresponding Eulerian vorticity fields.

2. Lagrangian pseudovorticity

The vortices shed at the edges of relatively large objects oscillating in superfluid 4He have
been recently visualized in planes approximately parallel to the direction of oscillation,
by following the flow-induced motions of small solid particles suspended in the liquid
(Duda et al. 2015; Duda, La Mantia & Skrbek 2017). The strength of these vortices was
estimated from the two-dimensional particle positions and velocities using a purpose-made
scalar measure, introduced to quantitatively compare vortices obtained under different
experimental conditions because, as already noted, it is in general not possible to obtain
flow vorticity fields from sparse Lagrangian data.

This scalar quantity was named Lagrangian pseudovorticity θ and, as mentioned above,
it was also used by Švančara et al. (2020) in their experimental study of macroscopic
vortex rings propagating in superfluid 4He. It is here defined as

θ(r, t) =
〈

[(ri − r) × ui]z

|ri − r|2
〉
M

, (2.1)

where ri and ui denote the particle positions and velocities in the considered plane,
respectively. The angle brackets indicate the ensemble average within the set M of
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Lagrangian particles, which are captured within a time window centred at time t and are
found within an annular region centred, on a chosen grid, at the inspection point r. The
subscript z denotes the axis perpendicular to the observation plane, i.e. we consider here
only the non-zero component of the vector product (the observed particle tracks occur in a
plane). The size of the annular region was chosen in order to have enough particles for the
calculation of θ and, at the same time, to exclude diverging contributions from particles
too close to the inspection point r.

Before proceeding, it is now useful to note a few properties of the Lagrangian
pseudovorticity θ . As mentioned above, it can be shown analytically that θ is closely
related to the Eulerian vorticity, in the case of fluid particles that are homogeneously
distributed in space (Švančara et al. 2020). Furthermore, it was reported that, for a Rankine
vortex, the magnitude of θ decreases when the area of the annular region used for its
calculation increases, that is, when the outer radius of the region increases, for given
grid and number of fluid particles within the annular region (Švančara et al. 2020).
Additionally, this magnitude can be appreciably smaller than that of ω when the area
is significantly larger than the area where the flow vorticity is concentrated. For example,
when the region outer radius is 10 (100) times larger than the Rankine vortex radius, the
maximum pseudovorticity magnitude, located at the vortex centre, is more than 5 (50)
times smaller than the corresponding vorticity value. We note in passing that changing the
grid or the number of points within the annular region has a less significant effect on the
calculated pseudovorticity magnitude in comparison with the just mentioned influence of
the annular region size.

A similar outcome – displayed in figure 2 – can be obtained for a Lamb–Oseen vortex,
which is characterized by a vorticity spatial distribution closer to that observed for vortex
rings (see, for example, figure 4 in § 3.2, where relevant numerical results are plotted). It
is also apparent that the pseudovorticity may change sign in the vortex vicinity, similarly
to what is seen in figure 4(b). Additionally, it is evident from the inset of figure 2 that the
number of fluid particles distributed in the annular region becomes important solely when
it assumes relatively small values. The same applies to the chosen grid size that affects
the computed pseudovorticity values only for numbers of grid points smaller than those
considered in the figure.

Before presenting our numerical results, we also note here that in Appendix A,
additional analytical results on the relation between pseudovorticity and vorticity are
reported. Specifically, we show that, for an isolated vortex having a purely azimuthal
velocity field, the pseudovorticity magnitude becomes smaller if the area employed
for its estimate increases. We also suggest an explanation for the sign changes of the
pseudovorticity displayed in figures 2 and 4, that is, the outcome can be explicitly related
to the fact that the corresponding particle distributions are not homogeneous or isotropic.

3. Finite element method ring

The finite element method (FEM) (Brezzi & Fortin 1991) was chosen for the space
discretization of the well-known equations governing the isothermal dynamics of an
incompressible viscous fluid. We specifically employed the Taylor–Hood mixed FEM
using the FEniCS library (Alnæs et al. 2015). The discretization in time was performed
employing the implicit Crank–Nicolson scheme and the incremental pressure correction
scheme (Guermond et al. 2006) was used for finding an efficient approximate solution of
the coupled velocity–pressure problem.
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Figure 2. Pseudovorticity for a Lamb–Oseen vortex as a function of the distance from the vortex axis (radius).
Vortex parameters: circulation Γ = 50 mm2 s−1, kinematic viscosity ν = 0.01 mm2 s−1 and time t = 10 s.
Black circles: vortex velocity v; red circles: vorticity ω; open circles: pseudovorticity θ . The corresponding
subscripts in the legend indicate the radius, in mm, of the area used for the calculation of θ from (2.1). One
thousand equally spaced grid points were employed for the estimate shown in the main panel, up to a radius of
10 mm, and 100 fluid particles were distributed in the annular region, equally spaced along the radial direction
(the pseudovorticity is not computed in the region centre and is set to zero at the vortex centre). Note that the
chosen particle distribution is not radially symmetric, that is, the particles are clustered in the vortex centre
vicinity. The results plotted in the inset were obtained using 100 equally spaced grid points, up to a radius of
10 mm, and the number of equally spaced fluid particles within the annular region is specified in the legend.
The region outer radius for the data in the inset is 30 mm. The magenta line indicates the pseudovorticity trend
obtained using 1000 equally spaced grid points, corresponding to the cyan open circles in the main panel.

A schematic view of the numerical domain employed for the simulations in two
dimensions is shown in figure 3. For these simulations we have specifically chosen
boundary conditions close to experimental ones (Švančara et al. 2020). On all domain
boundaries the fluid velocity is set to zero, excluding the top of the domain, where a
traction free boundary condition is imposed, and the nozzle top, where the vertical fluid
velocity has a spatial parabolic profile during the first second of the simulation (it is zero at
later times). There, the fluid peak velocity linearly increases from 0 to 10 mm s−1 during
the first 0.1 s, remains constant for the following 0.8 s and linearly decreases from 10 to
0 mm s−1 during the last 0.1 s of the first second of the simulation.

The latter boundary condition simulates the vortex ring generation process, which may
occur when a parcel of fluid is ejected into a reservoir through a nozzle. In practice, this
is often achieved using a piston moving inside the nozzle with a velocity Up, for a stroke
length L. An adequate Reynolds number can then be defined as

Re = UpL
2ν

= Γ0

ν
, (3.1)

where, for the present simulations, the fluid kinematic viscosity is ν = 0.01 mm2 s−1 and
Γ0 = UpL/2 indicates the ring nominal circulation (see e.g. Švančara et al. 2020).

Here, we set Up equal to the mean value of the imposed fluid velocity during the first
second of the simulation, i.e. Up = 6 mm s−1, and the stroke length L = Uptp = 6 mm,
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Figure 3. Two-dimensional domain used for the FEM simulations, composed of the grey, light blue and red
areas. The yellow area – 5 mm wide and 10 mm high – represents the nozzle and is not included in the numerical
domain (a parcel of fluid is ejected through the nozzle to generate the vortex ring). The grey area is 50 mm wide
and 110 mm high. In the light blue area – 20 mm wide and 79 mm high – 5676 fluid particles are uniformly
distributed at the beginning of the simulation (experiment particle distribution; the area is located 1 mm above
the nozzle and includes the red area). In the red area – 10 mm wide and 5 mm high – 22 801 fluid particles are
uniformly distributed 1 s after the beginning of the simulation (delay particle distribution; the area is located
1 mm above the nozzle). The origin of the Cartesian reference system (indicated by black arrows) is at the
bottom centre of the yellow area.

where tp = 1 s is the imposed duration of the fluid ejection into the reservoir. It follows
that Γ0 = 18 mm2 s−1 and Re = 1800, which means that our FEM ring is most likely
in the laminar regime (Glezer 1988). Additionally, L/D = 1.2, where D = 5 mm is the
nozzle internal diameter, that is, we do not expected a prominent ring wake (Gharib,
Rambod & Shariff 1998); note also that the ring nominal impulse, per unit of density,
I0 = Γ0π(D/2)2 = 353 mm4 s−1 (Sullivan et al. 2008).

A mesh independence check was performed on three meshes with different densities
for the space discretization, resulting in systems with sizes ranging from 2 × 105 to
1.3 × 106 degrees of freedom. The size of the time step ranged from 0.01 to 0.001 s. Full
three-dimensional computations were also performed for the sake of comparison and the
obtained results were not appreciably different from the two-dimensional ones; see Outrata
(2020) for further details. In the following, we discuss the two-dimensional numerical
results obtained using the most refined mesh, that with approximately 1.3 × 106 degrees
of freedom, and with the smallest time step, equal to 0.001 s (the entire simulation lasts
15 s).

3.1. Initial fluid particle distributions
We considered fluid particles in the obtained Eulerian flow fields and tracked their
motions in order to compute – from the particle positions and velocities – the Lagrangian
pseudovorticity, (2.1). As a first step, we uniformly distributed, at the beginning of the
simulation, approximately 6000 particles in a relatively large area of the numerical domain,
shown as the light blue region in figure 3, our aim being to replicate actual experimental
conditions (Švančara et al. 2020). We refer to this arrangement as the experiment particle
distribution and label it with the letter E. As shown in the following, its results are
characterized by the fact that many particles do not move, being away from the vortex
ring, similarly to what is observed in experiments.
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Figure 4. Pseudovorticity and vorticity maps obtained 10 s after the beginning of the FEM simulation.
Pseudovorticity computed from (a) the experiment (E) and (b) the delay (D) particle distributions. (c) Vorticity
field. The reference system is that defined in figure 3. Clockwise fluid rotation corresponds to positive values
of pseudovorticity and vorticity (the ring is moving upward). Note that the vorticity and pseudovorticity values
in the nozzle proximity, for vertical positions smaller than 15 mm, are not taken into account in the other
calculations reported here.

For our analysis we also employed another particle arrangement and refer to it as
the delay distribution, because the fluid particles were added to the Eulerian flow fields
1 s after the beginning of the simulation (we label this distribution with the letter D).
Additionally, compared with E, more particles were distributed in a smaller area, shown
as the red region in figure 3, our main aim being to increase the number of particles
significantly contributing to the pseudovorticity computation, that is, the number of
moving particles.

The inner and outer radii of the annular region employed for pseudovorticity estimates,
(2.1), were set to 0.1 and 3 mm, respectively, and the corresponding time window is 10 ms
wide. For both distributions, the chosen grid is a rectangular mesh of 53 × 126 inspection
points, covering a 20.8 mm wide and 60.0 mm high area of the computational domain,
centred just above the nozzle (see figure 3). Note that on the same grid the obtained
flow vorticity was interpolated and that the fluid particle velocities are known from the
numerical simulation, that is, they are not computed from the particle positions as in the
experiments (Švančara et al. 2020).

3.2. Pseudovorticity maps
Having set these conditions, we calculated the Lagrangian pseudovorticity θ from the
instantaneous positions and velocities of both particle distributions. In figure 4(a,b) we
display the θ maps obtained 10 s after the beginning of the simulation. In figure 4(c) the
same-time flow vorticity is plotted.

If one compares figures 4(a) and 4(c), it is apparent that the vortex ring vertical position
obtained from the experiment particle distribution is quite close to that resulting from
the vorticity map. On the other hand, the ring spatial extent for the E distribution is
appreciably larger than that apparent from the vorticity map. Additionally, the experiment
pseudovorticity magnitudes are at least 100 times smaller than the vorticity ones.

Instead, for the delay particle distribution the magnitudes of θ are significantly
closer to those of ω (see figure 4b,c). More importantly, the corresponding spatial
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Figure 5. Root-mean-square (r.m.s.) pseudovorticity (red) and vorticity (black) profiles obtained 10 s after the
beginning of the FEM simulation. The pseudovorticity is computed from the delay (D) particle distribution.
Profiles are averaged either in the vertical (a) or horizontal (b) directions. The different scales on the vertical
axes are for pseudovorticity (left axes) and vorticity (right axes). The reference system is as in figure 4. Note
that the vorticity and pseudovorticity values in the nozzle proximity, for vertical positions smaller than 15 mm,
are not taken into account in the other calculations reported here.

distributions are quite similar to each other. This is further confirmed in figure 5, which
shows root-mean-square profiles of θ and ω, respectively averaged over the vertical and
horizontal directions.

We note in passing that particle positions characterized by velocities smaller than
0.01 mm s−1 were not taken into account for the present pseudovorticity estimate because
this led to (slightly) smoother θ maps and (slightly) larger pseudovorticity magnitudes for
the E particle distribution. The effects were, however, absent for the D particle distribution,
due to the larger velocities of the considered particles. Additionally, for the D distribution,
the vorticity in the nozzle proximity is not seen, because the particles are distributed 1 s
after the beginning of the simulation.

More generally, the results displayed in figures 4 and 5 confirm that the Lagrangian
pseudovorticity can be used to characterize vortex ring features in the absence of Eulerian
data (Švančara et al. 2020). Additionally, they demonstrate that the quantitative agreement
between θ and ω strongly depends not only on the number of flow-probing particles, but
also on how they are distributed in the region of interest.

3.3. Ring position, velocity and radius
In order to further support the previous claims, we calculated other relevant quantities from
the obtained pseudovorticity and vorticity maps, which enable, for example, the estimation
of the vortex ring location and size over time.
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Dataset θ0 v v/Up 2R C AC
(s−1) (mm s−1) (mm) (mm2 s−1) (mm2)

Vorticity 0.800 2.08 ± 0.13 0.35 3.09 ± 0.14 46.21 ± 2.32 13.78 ± 0.61
Tracer D 0.070 2.09 ± 0.24 0.35 3.37 ± 0.09 5.37 ± 0.61 16.95 ± 2.58
Tracer E 0.002 2.06 ± 0.42 0.34 4.51 ± 0.23 0.28 ± 0.04 35.06 ± 1.91

Table 1. Properties of the FEM ring. (i) Chosen threshold θ0 for ring identification, set to approximately 10 %
of the maximum magnitude at late times. (ii) Ring vertical velocity v; see also figure 6(b). (iii) Ratio between
the mean value of the ring vertical velocity v and the piston velocity Up, which is found to be consistent with
values reported in the literature (see e.g. Sullivan et al. 2008). (iv) Ring diameter 2R; see also figure 7. (v) Ring
circulation C from (3.2); see also figure 8. (vi) Ring area AC; see also figure 9. Results obtained by applying
the chosen threshold values. Symbols as in Švančara et al. (2020).
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Figure 6. Ring position (a) and velocity (b) as a function of the time t elapsed from the beginning of the
FEM simulation. The reference system is that defined in figure 3.

As a first step, following Švančara et al. (2020), we chose, for each map, a positive
threshold value θ0 that is employed to identify and track the vortex ring. The positive
(clockwise) part of the ring is then made of grid points with θ > θ0; the negative
(counterclockwise) one is instead described by θ < −θ0. The chosen values – listed in
table 1 – are constant in time and are set to approximately 10 % of the maximum magnitude
at late times.

Once the filtered maps are computed, we can identify the centres of the positive and
negative vortical regions, and the distance between them, which is known as the ring
diameter 2R (Gan & Nickels 2010). Additionally, the ring position P is defined as the
centre of the two vortices and its velocity is calculated by convolving P with a suitable
Gaussian kernel (Švančara et al. 2020).

We note in passing that the values listed in table 1 are obtained for times ranging between
3.00 and 14.79 s (the entire simulation lasts 15 s). The upper limit is due to the Gaussian
algorithm chosen for the ring propagation velocity calculation, while the lower one is

924 A44-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.662


On the determination of vorticity using Lagrangian particles

t (s)

R
in

g
 r

ad
iu

s 
(m

m
)

Vorticity

Tracer D

Tracer E

4

1.5

2.0

2.5

6 8 10 12 14

Figure 7. Ring radius R as a function of the time t elapsed from the beginning of the FEM simulation. The
reference system is as in figure 6.

imposed to remove the influence on the results of the fluid vorticity in the nozzle proximity
(see figure 4) – in the present work we decided not to investigate the ring generation
process mainly because this was not accessed in relevant experiments (Švančara et al.
2020).

In figure 6 we plot the position and velocity of the vortex ring as a function of the
time elapsed from the beginning of the simulation. It is evident that the ring position
is well captured by both pseudovorticity maps, while the ring velocity obtained from the
experiment particle distribution is characterized by a significantly larger standard deviation
compared with that derived from the delay distribution (see also table 1). On the other
hand, the corresponding mean values are quite close to each other (see again table 1).
Note also that, at sufficiently late times, the ring velocity shows a tendency to decrease in
magnitude, which is a behaviour occurring to vortex rings propagating in a viscous fluid
(see e.g. Maxworthy 1974; Sullivan et al. 2008).

One also expects that the decrease of the ring velocity magnitude is accompanied
by an increase of its radius. As shown in figure 7, which displays the vortex radius
as a function of the time elapsed from the beginning of the simulation, this behaviour
is indeed captured by the delay particle distribution. However, this is not the case for
the experiment distribution. The outcome can be related to the above mentioned fact
that the ring spatial extent is not well resolved by this particle arrangement (see again
figure 4).

We can therefore say that, using the Lagrangian pseudovorticity, one can track rather
well the position of a vortex ring and estimate with some confidence its propagation
velocity. On the other hand, in order to get quantitative information on the ring
spatial extent, one should also employ for the Lagrangian analysis a number of fluid
particles significantly larger than those used to date in experiments (Švančara et al.
2020). Additionally, these particles should be distributed in a relatively small area, with
dimensions comparable with those of the ring itself.
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Figure 8. Ring circulation as a function of the time t elapsed from the beginning of the FEM simulation.
(a) The solid lines indicate the ring circulation Γ obtained using the full maps, from (3.2) with θ0 = 0 (see
figure 4). The dashed lines denote the circulation C calculated using the filtered maps, from (3.2) with the
threshold values listed in table 1. (b) Circulation C normalized by the ring nominal circulation Γ0. Note that
in (b) and in all the other FEM figures – excluding figures 4 and 5 – the chosen pseudovorticity and vorticity
thresholds are taken into account for the estimate of the plotted quantities.

3.4. Ring circulation and area
Following Švančara et al. (2020) we also estimate the ring circulation C from the
pseudovorticity (and vorticity) maps. For this, we use the relation

C = C+−C−
2

=
∑

(θ+a) − ∑
(θ−a)

2
, (3.2)

where the summations only include the grid points characterized by values of θ (or
ω) passing the threshold θ0 listed in table 1. The subscript + (−) denotes that the
pseudovorticity and vorticity values are positive (negative), and a is the fixed area
associated with each grid point. Since C+ ≈ |C−|, we discuss here only their mean
absolute value C.

In figure 8(a) the dashed lines represent the temporal evolution of C and the solid lines
correspond to the actual ring circulation Γ , obtained using the full maps, that is, with the
threshold θ0 set to zero. We can see that C is consistently smaller than Γ , likely because the
filtered maps do not capture the wake shed by the moving ring. Figure 8(a) also displays
the tendency of the ring circulation to decrease at late times. This is an expected behaviour
for both turbulent and laminar rings, as discussed, for example, by Maxworthy (1974) and
Didden (1979), respectively.

Additionally, the circulation magnitude derived from the flow vorticity (black line) is
approximately 100 times larger than that obtained from the experiment particle distribution
(blue line). This is also evident from figure 8(b), which displays C normalized by the ring
nominal circulation Γ0. A similar outcome was reported by Švančara et al. (2020), who
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Figure 9. Ring area as a function of the time t elapsed from the beginning of the FEM simulation.

showed that experimentally obtained values of C can be much smaller than relevant values
of Γ0, up to approximately two orders of magnitude. Note that for these experiments it was
not possible to access the actual ring circulation Γ and that the nominal circulation was
estimated from suitable values of fluid velocity.

From figure 8(b) it is also apparent that C/Γ0 ≈ 2, when C is computed from the filtered
vorticity maps (black line). Indeed, measured values of ring circulation were found to be
of the same order as Γ0 by a few investigators, in various experimental conditions (see
e.g. Maxworthy 1974; Didden 1979; Borner & Schmidt 1985). Note, however, that the ring
nominal circulation Γ0 = U2

ptp/2; that is, if we set, for our FEM ring, Up = 10 mm s−1 and
tp = 0.8 s, we obtain a nominal circulation more than two times larger than that employed
in figure 8(b) – see also the above discussion of (3.1). It then follows that the numerical
values shown in the figure should solely be regarded as first-order estimates, considering
also that, as discussed, for example, by Glezer (1988), the nozzle geometry and the piston
velocity time history may have a significant influence on the resulting ring features.

Following Švančara et al. (2020) we can now estimate the ring area AC from (3.2), by
setting θ+ = 1 and θ− = −1. We plot the result in figure 9(a) as a function of the time
elapsed from the beginning of the simulation. Additionally, in figure 9(b), we display the
ratio AC/AR, where AR = πR2 and R is the estimated ring radius shown in figure 7.

The most prominent feature of figure 9 is likely the peak observed for the delay particle
distribution (red lines) at short times. This can be related to the fact that, at around the
same time, the ring wake disappears from the filtered θ maps. Note that a similar peak is
also observed in the estimated vertical velocity of the ring, at t ≈ 6 s (figure 6b).

Additionally, from figure 9(b), it appears that the ring radius R can be used as a
valuable first-order estimate of the ring spatial extent. More importantly, we see from both
panels that the ring spatial extent is quite well captured by the delay particle distribution,
consistent with our previous discussion.

In summary, our results confirm that the Lagrangian pseudovorticity can be used to
quantify general features of relatively large vortical structures – such as their position
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and propagation velocity – and that this is especially meaningful when Eulerian data are
not available, which is specifically the case for experiments in superfluid 4He (Švančara
et al. 2020). Additionally, we have shown here that the spatial extent of these vortices
can be quantitatively determined by θ maps solely in conditions yet to be met in relevant
experiments, that is, only for sufficiently dense particle distributions, which, by the way,
could allow one to directly access Eulerian flow fields.

So far we have considered fluid particles, which by definition exactly follow the flow,
but the particles commonly used in experiments can deviate from streamlines due to their
inertia. In the next section, we then investigate the effect of particle inertia on the relation
between θ and ω.

4. Hall–Vinen–Bekarevich–Khalatnikov ring

The Hall–Vinen–Bekarevich–Khalatnikov (HVBK) model is often used to describe
the large-scale hydrodynamics of superfluid 4He. At finite temperatures, between
approximately 1 and 2.2 K, this unique liquid can be seen as a mixture of two components:
the superfluid component, with no viscosity, and the normal fluid component, with
Newtonian viscosity (see e.g. Landau 1941; Donnelly 2009). The HVBK model is valid
at scales much larger than the typical distance between quantized vortices, which are line
singularities – holes – within the superfluid component. The model therefore describes the
coarse-grained dynamics of the two components. Within this framework, their respective
velocity fields vs and vn follow two coupled incompressible Navier–Stokes equations:

∂vn

∂t
+ (vn · ∇)vn = −∇pn

ρn
+ νn∇2vn − ρs

ρn
f ns, (4.1)

∂vs

∂t
+ (vs · ∇)vs = −∇ps

ρs
+ νs∇2vs + f ns, (4.2)

∇ · vs = ∇ · vn = 0. (4.3)

Here, ρs and ρn are the temperature-dependent densities of the two fluids (the total fluid
density is ρ = ρn + ρs), while ps and pn indicate their respective pressure fields.

The two fluids are coupled by a mutual friction force f ns. This force is responsible for
the transfer of energy between the components, and it also contributes to the dissipation
of energy of the entire system. As a first approximation, f ns increases linearly with the
relative velocity between the components, that is, f ns = αΩ0(vn − vs), where α is a
non-dimensional mutual friction coefficient – tabulated by Donnelly & Barenghi (1998) –
and Ω0 indicates a mutual friction frequency, related to the density and orientation of
the quantized vortices embedded in the superfluid. For example, in isotropic superfluid
turbulence, this frequency may be taken as proportional to a characteristic superfluid
vorticity (L’vov, Nazarenko & Skrbek 2006). Here, as we consider the case of an isolated
vortex ring, this frequency is taken as a constant control parameter. We have also included
in (4.2) a superfluid dissipation term, parameterized by an effective temperature-dependent
kinematic viscosity νs (Vinen & Niemela 2002). This term accounts for the dissipation
of superfluid energy at scales smaller than those resolved by the HVBK model. Such
dissipation mechanisms include quantized vortex reconnections and excitation of Kelvin
waves, which transport energy towards the smallest scales of the system (see e.g. Švančara
& La Mantia 2019; Villois, Proment & Krstulovic 2020). Additionally, in (4.1) the
kinematic viscosity of the normal component νn is set equal to μn/ρn, where μn is the
fluid dynamic viscosity, also tabulated by Donnelly & Barenghi (1998).
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In the reference study by Švančara et al. (2020), solid deuterium particles were used
to evaluate the Lagrangian pseudovorticity associated with vortex rings generated in
superfluid 4He. Such particles are not perfect tracers of the flow, as their density is about
1.4 times larger than that of the fluid, and their typical diameter is a few micrometres
(Švančara & La Mantia 2017). Hence, particle inertia is expected to play some role in
pseudovorticity estimates.

In superfluid 4He, inertial particles are not only subject to the Stokes drag associated
with the normal fluid viscosity, but also respond to pressure gradient forces from the two
fluids (see e.g. Sergeev & Barenghi 2009). Finite-size effects can be neglected, as particles
are much smaller than the core size of the studied vortex ring, as reported below, in § 4.1.
Consequently, if one also neglects Basset history terms and assumes that particles are
spherical, the particle equation of motion reads

dvp

dt
= vn(xp) − vp

τp
+ β

(
ρn

ρ

Dvn

Dt
+ ρs

ρ

Dvs

Dt

)
, (4.4)

where xp and vp are the particle position and velocity, respectively, and D/Dt denotes
the material derivative associated with each fluid component. The density parameter β

accounts for added mass effects and is given by β = 3ρ/(2ρp + ρ), where ρp is the particle
density. The Stokes time, representing the typical particle response time to normal fluid
fluctuations, is τp = ap

2/(3βν), where ap denotes the particle radius and ν = (ρn/ρ)νn =
μn/ρ indicates the temperature-dependent kinematic viscosity of superfluid 4He, also
tabulated by Donnelly & Barenghi (1998). Formally, tracer dynamics is obtained in the
limit τp → 0.

The HVBK equations (4.1)–(4.3) are solved by direct numerical simulation in a
three-dimensional periodic domain using a Fourier pseudo-spectral solver (Homann et al.
2009). Particles are initialized at random locations in the domain and are advanced in time
according to (4.4). Fluid velocities and accelerations are interpolated at particle positions
using fourth-order B-splines (van Hinsberg et al. 2012). Time advancement of fields and
particles is performed using a third-order Runge–Kutta scheme.

Figure 10 displays results from a typical simulation, in which we observe the vortex
ring together with spherical particles having the same density of deuterium particles, at
the chosen temperature T = 1.9 K (see numerical details later). All panels correspond
to the same time of ring evolution, for different particle families. From figures 10(a)
to 10(c) the particle size is increased, leading to a larger Stokes response time. As a
consequence, the effect of inertia becomes apparent and holes (regions without particles)
are clearly observed. Such structures are similar to those seen in the experimental pictures
displayed in figure 1, but one should keep in mind that the latter are not Eulerian images,
that is, they were not obtained at a fixed time as the images in figure 10.

4.1. Simulation set-up
We consider superfluid 4He at 1.9 K. At this temperature, the densities of the normal
fluid and superfluid components satisfy the ratio ρn/ρs = 0.72 and the liquid kinematic
viscosity is ν ≈ 0.01 mm2 s−1. This value is very close to that used for the FEM ring –
note that, as stated above, the density and viscosity of He II depend on temperature (see
e.g. Donnelly & Barenghi 1998). Additionally, at this temperature, the effective superfluid
viscosity is close to that of the normal fluid (Vinen & Niemela 2002) and the mutual
friction coefficient is α = 0.206. For the numerical simulations we set the mutual friction
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Figure 10. HVBK simulation of a vortex ring moving downward with three families of deuterium particles
at a relatively early time, approximately 1 s after the beginning of the simulation. (a) Particles with radius of
5 μm. (b) Particles with radius of 10 μm. (c) Particles with radius of 30 μm. The respective Stokes numbers
are St ≈ 0.1, 0.3 and 2.5 (see table 2). The peculiar shape observed in (c) is due to particles being expelled
from highly rotating regions as a result of their high inertia. Additionally, particles initially located in front of
the vortex ring are propelled upwards via the ring centre in a ballistic motion, resulting in the observed wake
pattern.

parameter to Ω0 ≈ 110 s−1. We can thus consider that the fluid components are well locked
to each other for the time scales relevant to this work.

An isolated vortex ring of normal fluid is introduced in the middle of the periodic box,
which has 28 mm sides. The origin of the chosen reference system is located at the box
centre. The ring radius is R = 3.5 mm and its initial circulation is Γ0 ≈ 95 mm2 s−1. It
follows from (3.1) that the ring Reynolds number is slightly larger than 104. Note that
the superfluid component is initially at rest. However, due to mutual friction, the normal
fluid vortex ring quickly induces the formation of an equivalent superfluid ring. Such a
macroscopic superfluid vortex is typically composed of a bundle of quantized vortices (see
e.g. Wacks, Baggaley & Barenghi 2014) that are modelled in the HVBK framework as a
continuous vorticity field. In this work we are not interested in this fast transient dynamics.

Note also that, due to the domain periodicity, a vortex ring eventually returns to its initial
position. Although the ring leaves a wake behind it, its dynamics is almost unaffected by
it, since the wake is rapidly dissipated by viscosity (within one period, lasting about 5 s).
However, as particles are not continuously injected in the domain, their spatial distribution
becomes inhomogeneous after the passing of a ring. Hence, the studied configuration
mimics an experiment in which rings are injected periodically, but one should also account
for the fact that the ring size and velocity change with time. We will not further exploit
this analogy in the present work.

The vortex ring core is initialized with a Gaussian vorticity profile, ω(r) =
ω0 exp[−r2/(2r2

0)], where r is the distance from the core centre. The vortex core radius
r0 = 0.2 mm and the vorticity at the core centre is set to fix the value of the ring
circulation. We note in passing that the generation of such a thin vortex ring does
not appear straightforward with the apparatus employed by Švančara et al. (2020),
mainly because the experimentally generated rings seem to have a rather large core size,
but, as shown below, the HVBK ring provides a good setting to study the effect of
inertia.

As detailed in § 4.2, we track solid hydrogen and deuterium particles – by setting their
density – with sizes similar to those found in 4He experiments. For comparison, we
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also follow perfect tracers of the normal fluid. We specifically consider three families
of spherical particles, having radii of 5, 10 and 30 μm, and we seed 5 × 105 particles,
homogeneously distributed over the whole (three-dimensional) computational domain.
The corresponding Stokes times range approximately from 1 to 41 ms. The characteristic
ring time τr is estimated using the initial circulation Γ0 and the core radius r0. We obtain
that τr ≈ 17 ms, i.e. relevant values of Stokes number St = τp/τr are between 0.04 and
2.47 – see also table 2.

4.2. Pseudovorticity maps
At the beginning of the simulation, particles are suspended in the cubic volume. A layer of
the latter, parallel to the ring propagation direction and situated in the centre of the periodic
box, is considered for the pseudovorticity estimate. This volume layer is 0.2 mm thick and
contains between 3100 and 3600 particles at each time step, which lasts approximately
0.09 s (the entire simulation lasts approximately 27 s). The positions and velocities of these
particles were then employed for the calculation of the pseudovorticity according to (2.1).
This estimation was performed on a square grid of 101 × 101 inspection points, covering a
27.6 × 27.6 mm2 area. The chosen annular region has 0.1 mm inner and 3 mm outer radii,
which are the same values used for our FEM analysis in a viscous fluid, discussed in § 3.
The corresponding time window is equal to the time step, that is, for the HVBK ring, no
temporal averaging was carried out.

Note also that, as in the FEM study, the numerically obtained flow vorticity values were
interpolated on the chosen pseudovorticity grid, for the sake of comparison. Additionally,
in order to follow the ring motion for distances larger than the box size, the ring is at
each time step centred in the box middle using the position of the normal fluid vorticity
maximum at that time step (the introduced ring is symmetric). From the latter maximum
position it is then possible to get the ring position as a function of time, in a chosen
reference system not moving with the ring, as for the FEM ring.

Pseudovorticity maps were obtained for fluid tracers and inertial particles. The latter
are characterized by a density different from that of the fluid and by a finite Stokes
response time (a finite radius). Additionally, we chose particles having features compatible
with recent visualization experiments in superfluid 4He (see e.g. Švančara et al. 2018).
Specifically, we chose spherical particles made of solid deuterium D2 – heavier than liquid
He II, with a density ratio of 1.37 at 1.9 K – and solid hydrogen H2 – lighter than superfluid
4He, with a density ratio of 0.60 at the same temperature. Similarly, we selected particle
radii of the same order as and larger than the dimensions of particles in experiments – see
La Mantia & Skrbek (2014) and Švančara & La Mantia (2017) for typical distributions of
particle sizes.

Pseudovorticity maps calculated from the different particle classes are shown in
figure 11. As in the FEM analysis, it is possible to capture the instantaneous ring location
using tracer particles, but the magnitude of the computed pseudovorticity is two orders of
magnitude smaller than that of the vorticity; see also the corresponding circulation values
in table 2. Moreover, the pseudovorticity maps obtained using small inertial particles are
quantitatively similar to those obtained using tracers. This is expected, as the motion
of small particles should not be strongly affected by inertial effects. More practically, it
indicates that hydrogen and deuterium particles having radii up to 10 μm – corresponding
to St < 0.3 – may be used to accurately detect the presence of a vortex ring in the
present setting. In our study, it is only for the largest particles, with radius ap = 30 μm,
corresponding to St > 1, that pseudovorticity estimates importantly deviate from those of
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Figure 11. Vorticity and pseudovorticity maps obtained 2.69 s after the beginning of the HVBK simulation.
(a) The Eulerian vorticity map. (b–h) Pseudovorticity maps obtained using different types of particles, as
indicated in the panel titles (the shown dimension indicates the particle radius). The origin of the reference
system, moving with the ring, is located at the centre of the periodic box. Clockwise fluid rotation corresponds
to positive values of pseudovorticity and vorticity (the ring is moving downward).

tracer particles, even though relevant qualitative information may still be extracted from
the resulting maps.

In our simulations, we also observe that, for fluid tracers, the number of particles does
not influence appreciably the obtained results. For example, if the chosen layer of the
cubic volume is five times thicker, the number of particles used for the pseudovorticity
calculation also increases by approximately five times, but the corresponding magnitude
does not change appreciably, although its behaviour in space and time is possibly smoother
than that obtained for the thinner layer. Note that similar results were obtained for the FEM
ring, that is, increasing the number of particles in a given area did not significantly improve
the agreement between vorticity and pseudovorticity magnitudes above a certain number
of particles (see also the inset of figure 2). We expect that, for given number of particles,
a better agreement could be obtained for smaller annuli, as discussed in Appendix A.
On the other hand, if one decreases the size of the region used for the pseudovorticity
estimate in actual experiments, the number of particles in that region also decreases
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Figure 12. Root-mean-square (r.m.s.) pseudovorticity and vorticity profiles obtained 2.69 s after the beginning
of the HVBK simulation. Profiles are averaged either in the vertical (a–c) or horizontal (d–f ) directions.
Pseudovorticity profiles obtained from (a,d) deuterium D2 and (b,e) hydrogen H2 particles. Black, red and
blue lines in these panels indicate that corresponding particle radii are 5, 10 and 30 μm, respectively. (c, f )
Pseudovorticity profiles for tracers are plotted as red lines, with black lines indicating corresponding vorticity
profiles. Note the different scales on the vertical axes of the right-hand panels for pseudovorticity (left axes)
and vorticity (right axes). The reference system is as in figure 11.

(Švančara et al. 2020). It then follows that, as mentioned above, the choice we made here
for the annulus size is mainly motivated by the requirement of having enough particles in
the region of interest for the pseudovorticity calculation.

In order to make a quantitative comparison, we present in figure 12 the root-mean-square
profiles of pseudovorticity for the different particle families. These are compared with
the corresponding vorticity profiles. We clearly observe that particle inertia becomes
more important for the heavier and larger particles, i.e. for the deuterium particles with
30 μm radii, corresponding to the largest Stokes number. Additionally, vorticity and
pseudovorticity profiles qualitatively differ, in agreement with the above discussion.

4.3. Ring position, velocity and radius
Table 2 lists relevant vortex ring properties averaged over the entire HVBK simulation, for
times ranging from 0.09 to 26.93 s. The exception is the ring propagation velocity, which is
averaged between 1.89 and 25.14 s due to the Gaussian algorithm chosen for its calculation
(Švančara et al. 2020). Note that the small dependence of the ring velocity on the dataset
is most likely related to the above mentioned procedure of ring positioning in the box
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Dataset θ0 v 2R C AC St
(s−1) (mm s−1) (mm) (mm2 s−1) (mm2)

Vorticity 1.000 5.24 ± 0.77 7.10 ± 0.11 82.86 ± 5.30 11.63 ± 4.22 —
Tracer 0.010 5.24 ± 0.78 6.53 ± 0.25 1.51 ± 0.16 35.10 ± 2.96 —
D2 5 μm 0.010 5.24 ± 0.78 6.36 ± 0.21 1.58 ± 0.14 34.70 ± 2.51 0.07
D2 10 μm 0.010 5.24 ± 0.77 5.79 ± 0.17 1.74 ± 0.10 37.37 ± 3.04 0.27
D2 30 μm 0.005 5.28 ± 0.84 4.99 ± 0.47 0.74 ± 0.30 51.52 ± 3.34 2.47
H2 5 μm 0.010 5.24 ± 0.78 6.63 ± 0.28 1.49 ± 0.16 36.58 ± 3.13 0.04
H2 10 μm 0.020 5.24 ± 0.77 7.32 ± 0.44 1.24 ± 0.18 25.18 ± 1.79 0.16
H2 30 μm 0.050 5.24 ± 0.77 6.34 ± 1.14 1.60 ± 0.37 14.24 ± 2.63 1.45

Table 2. Properties of the HVBK ring. (i) Chosen threshold θ0 for ring identification, set to approximately
10 % of the maximum magnitude at late times. (ii) Ring vertical velocity v; see also figure 13(d–f ). (iii) Ring
diameter 2R; see also figure 14. (iv) Ring circulation C from (3.2). (v) Ring area AC. (vi) Stokes number St =
τp/τr, where τr ≈ 17 ms. Results obtained by applying the chosen threshold values. Symbols as in Švančara
et al. (2020).

centre at each time step. Indeed, this centring procedure was performed using the normal
fluid vorticity maximum, whose magnitude and position do not depend on the particle
type.

In figure 13 we present the vortex ring vertical position and velocity, computed from
the pseudovorticity maps. For comparison, we also show the results directly obtained
from the vorticity field, plotted as black lines. Remarkably, the determination of the ring
location is robust and independent of the particle family. Concerning its velocity, the
general trend is well reproduced, but some periodic oscillations are visible for the heaviest
and larger particles – namely the D2 30 μm family, corresponding to the largest Stokes
number. These oscillations are likely related to the periodicity of the domain because
their period – about 5 s – is approximately the time it takes for the ring to travel through
the periodic box. Additionally, as mentioned above, when the ring passes, it leaves in its
wake an inhomogeneous distribution of particles that is later encountered in front of the
ring. This effect is more marked for particles with high inertia, as is also apparent from
figure 10.

The determination of the ring radius, plotted in figure 14, is more sensitive to particle
inertia. It is evident from the figure – see especially figure 14(a) – that the ring radius
estimate does not depend appreciably on particle size and density for small enough
particles, with St � 0.1. Additionally, for these particles, the expected time increase of
the radius, evident from the vorticity trend, is recovered; see also the related discussion in
§ 3.3.

Another remarkable feature that can be seen in figure 14 is that, for particle radii of 5
and 10 μm, the ring radius R is – on average – larger for the hydrogen particles than for
the heavier ones (the ring diameter 2R was defined in § 3.3 as the distance between the
observed counter-rotating vortices). This may indicate that deuterium particles – heavier
than the fluid – tend not to probe the ring core region, as visualized in experiments
(figure 1) and in numerical simulations (figure 10). Moreover, for deuterium particles with
radii equal to 10 and 30 μm, the ring radius does not change appreciably with time and is
consistently smaller than that observed for tracer particles.

The peculiar behaviour observed in figure 14(b) for the largest hydrogen particles, those
with St = 1.45, is at present not entirely understood. However, from the corresponding
pseudovorticity maps – not shown here – one can notice that, for sufficiently large times,
larger than approximately 10 s, the underlying dipolar ring structure is replaced by two
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Figure 13. Temporal evolution of the ring vertical position (a–c) and velocity (d–f ) obtained from the HVBK
simulation. Panel disposition and line colour code as in figure 12. Note that here, for the sake of clarity and
comparison, we plot the absolute values of ring position and velocity in a fixed coordinate system, not moving
with the ring and coinciding with the moving frame of reference at the beginning of the simulation (in the
coordinate system of figure 11 the ring is moving downward, in the negative direction). The velocity time limits
are due to the Gaussian algorithm chosen for the velocity calculation (Švančara et al. 2020).

adjacent dipoles. On the other hand, one may more generally say that such large particles
are not suitable for tracking the ring.

Note finally that, for the sake of completeness, we also list in table 2 the values of ring
circulation and area for the different particle families, in the same fashion as in table 1,
but we do not show here the corresponding time trends because they do not add any
information on our discussion, that is, they merely confirm the already reported findings.

5. Conclusions

In a recent experimental work (Švančara et al. 2020) particle tracking velocimetry was
used to construct Lagrangian pseudovorticity maps that were found to provide valuable
information on the propagation of macroscopic vortex rings in superfluid 4He. In that
work, it was also shown analytically that such maps are closely related to the Eulerian
vorticity. For such a mathematical proof, it was assumed that particles act as ideal fluid
tracers and that they are homogeneously distributed in space. In practice, such assumptions
are rarely met in experiments.

In this work, we have numerically studied how particles can be used to study the
propagation of vortex rings, in the spirit of Švančara et al. (2020). We have performed
two sets of numerical simulations. In the first set, we have employed the finite element
method to study the behaviour of an isolated vortex ring in a viscous fluid, in a geometry
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Figure 14. (a,b) Ring radius as a function of the time t elapsed from the beginning of the HVBK simulation.
Note the different scales on the vertical axes. Reference system as in figure 13.

similar to that of the experimental setting used by Švančara et al. (2020). Fluid tracers
were specifically added to the flow to investigate the reliability of pseudovorticity maps.
In the second set, we have performed numerical simulations of an isolated vortex ring
in superfluid 4He, in a periodic domain, using the Hall–Vinen–Bekarevich–Khalatnikov
model. In this case, we have considered the dynamics of several particle families of
different sizes and densities. We have thus addressed the effect of particle inertia on the
propagation properties of an isolated vortex ring.

Overall, our results confirm that the Lagrangian pseudovorticity is a relevant estimator
for quantifying general features of isolated vortical structures, such as their position
and propagation velocity. This observation is robust and independent of particle inertia.
However, we have seen that the intensity of pseudovorticity fields can be much weaker
than the actual Eulerian vorticity, especially for sparse particle distributions, and that the
ring size is not correctly captured when highly inertial particles are used.

The outcome is especially important in the absence of Eulerian data, which is the
case for state-of-the-art visualization experiments in superfluid 4He (see e.g. Švančara
et al. 2021). More generally, our work neatly demonstrates that quantitative comparisons
between particle trajectories obtained under different experimental conditions can be
performed using pseudovorticity maps, taking also into account particle concentration
and inertia. Additionally, future work could focus on establishing the relevance of such
a measure for the identification of Lagrangian coherent structures, which is especially
relevant for geophysical flows (see e.g. Hadjighasem & Haller 2016).
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Appendix A. Analytical results

Švančara et al. (2020) reported that the Lagrangian pseudovorticity θ is half of the Eulerian
vorticity ω. This specifically occurs in the close vicinity of the inspection point r, defined
in (2.1), and for homogeneous and isotropic distributions of fluid particles, having smooth
velocity fields. Although these conditions are at present not met in the case of experiments
in He II, the result clearly demonstrates that θ and ω are related, and therefore supports
the use of the Lagrangian pseudovorticity, especially in the absence of Eulerian data.

In this appendix we further investigate analytically the relation between pseudovorticity
and vorticity in order to explain some results reported in the main text.

Following Švančara et al. (2020) we first rewrite (2.1) as

θ(r, R) = 1
N

∫
D(r,R)

f (r′)

[(
r′ − r

) × u(r′)
]

z

|r′ − r|2 d2r′, (A1)

where D(r, R) is a circle, centred at r, with radius R,

N =
∫

D(r,R)

f (r′) d2r′ (A2)

and f denotes the particle distribution function (note that here we disregard the time
dependence of the problem).

We now estimate the pseudovorticity for a two-dimensional vortex characterized by a
purely azimuthal fluid velocity, having magnitude

va = Γ

2πr
g(r2), (A3)

where Γ is the constant fluid circulation associated with the vortex and r indicates the
distance from the vortex centre. We assume here that g(r2) is a smooth, non-negative
function, vanishing at the origin, g(r2) = O(r2) for r → 0, and at most constant at
infinity, g(r2) = O(1) for r → ∞. The corresponding flow vorticity magnitude can then
be obtained as

ω = 1
r

∂rva

∂r
= Γ

π
g′(r2), (A4)

where g′(r2) indicates the relevant derivative of g(r2).
The pseudovorticity for a circle of radius R, centred at the inspection point (x0, 0),

in the Cartesian reference system having the origin at the vortex centre, can then be
analytically determined, for a given function g(r2), if also the spatial particle distribution
f is known. We first work with an unknown function g and a uniform particle distribution
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f = N/(πR2), N being the number of fluid particles. Using (A3) we can then rewrite
(A1) as

θ(x0; R) = 1
πR2

∫
D(x0,R)

r − (x0, 0)

|r − (x0, 0)|2 ×
[

Γ

2πr
g(r2)ea

]
d2r, (A5)

where ea indicates the azimuthal velocity direction in the chosen Cartesian coordinate
system and r is the magnitude of r.

In the polar reference system having the origin at the inspection point (x0, 0), (A5)
becomes

θ(x0; R) = Γ

2π2R2

∫ R

0

∫ 2π

0

g(r2)

r2

(
r′ + x0 cos ϕ′) dϕ′ dr′, (A6)

where r′ and ϕ′ are the chosen polar coordinates and r2 = (r′)2 + 2r′x0 cos ϕ′ + x2
0. Since

near the origin g(r2) = O(r2) = g′(0)r2 + O(r4), the integrand in (A6) has no singularity;
g′(0) denotes here the derivative of g(r2) at the vortex centre. Additionally, for x0 → ∞
the integral in (A6) goes to zero, that is, the pseudovorticity vanishes far from the vortex
centre, because the velocity vanishes too.

For x0 = 0, when the inspection point (x0, 0) coincides with the vortex centre, (A6)
becomes

θ(0; R) = Γ

πR2

∫ R

0

g[(r′)2]
r′ dr′. (A7)

Since g behaves at infinity at most as a constant, the integral in (A7) behaves at most as
ln R. Therefore, for large R values, θ(0; R) goes to zero. For small R values, we obtain

lim
R→0

θ(0; R) = lim
R→0

Γ

πR2

∫ R

0

g′(0)(r′)2 + O[(r′)4]
r′ dr′ = Γ

2π
g′(0) = ω|r=0

2
, (A8)

which means that, at the origin, the pseudovorticity converges to half of the vorticity. This
is compatible with the general result reported by Švančara et al. (2020), where it was
shown that, for particle distributions radially symmetric around the inspection point, the
pseudovorticity converges to half of the vorticity, for sufficiently small R values.

Additionally, using the Hermite–Hadamard inequality (Niculescu & Persson 2006), it
can be shown that θ(0; R) is a decreasing function of R near the origin, because the
function g(r2)/r is there concave. However, for large R values, the latter must become
convex, since it is positive, but, at the same time, it is expected that, for large R values, the
pseudovorticity goes to zero and therefore its variations are negligible.

In figure 15 we plot θ(0; R) as a function of R, for a Lamb–Oseen vortex, having the
azimuthal velocity magnitude

vLO = Γ

2πr
g(r2) = Γ

2πr

[
1 − exp

(−r2

4tν

)]
, (A9)

where r denotes the distance from the vortex centre and, as in figure 2, we set Γ = 50,
t = 10 and ν = 0.01 (for the sake of simplicity and generality, we do not explicitly mention
in this appendix relevant physical units). We note in passing that the corresponding flow
vorticity magnitude can be written as

ωLO = Γ

4πtν
exp

(−r2

4tν

)
. (A10)
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Figure 15. Pseudovorticity θ(0; R) as a function of the circle radius R, (A7), for a Lamb–Oseen vortex, (A9),
with Γ = 50, t = 10 and ν = 0.01. Note that the pseudovorticity θ(0; R) approaches half of the vorticity,
ω/2 ≈ 20, (A10), for R → 0, vanishes for R → ∞ and is a decreasing function of R. For the sake of simplicity
and generality, we do not explicitly mention in this appendix relevant physical units.

In summary, the analytical results reported to date – see especially figure 15 – support
the view that the pseudovorticity magnitude becomes smaller if the circular area chosen
for its estimate increases, as is also mentioned in the main text.

For x0 /= 0 the pseudovorticity is given by (A6) and we numerically calculated the
integral for the just introduced Lamb–Oseen vortex, that with Γ = 50, t = 10 and ν =
0.01. The integration was carried out using the software Wolfram Mathematica and in
figure 16 we plot the obtained result for R = 0.3 (open orange circles). A remarkable
agreement with half of the actual flow vorticity (red line) is obtained.

In the same figure the green line, showing a pseudovorticity sign change, corresponds to
the green open circles in the main panel of figure 2, that is, it displays the pseudovorticity
for the chosen Lamb–Oseen vortex, estimated directly from (2.1), using 1000 equally
spaced grid points, up to a radius of 10. Additionally, 100 equally spaced fluid particles
were distributed in the chosen annular region, having outer radius equal to 0.3 (the
pseudovorticity was not computed in the region centre and was set to zero at the vortex
centre). Note also that, as mentioned in § 2, the particles are in this case equally spaced
along the radial direction, which means that the chosen particle distribution is not radially
symmetric and that the particles are clustered in the vortex centre vicinity.

We can see from (A6) that the integrand is non-negative if

r′ + x0 cos ϕ′ � 0, (A11)

which can be rewritten in the Cartesian coordinate system (x, y) having the origin at the
vortex centre as (

x − x0

2

)2 + y2 �
(x0

2

)2
. (A12)

The above equality is satisfied for a circle with radius x0/2, centred at (x0/2, 0). Points
outside this circle contribute positively to the pseudovorticity, while points inside it
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Figure 16. Pseudovorticity for a Lamb–Oseen vortex as a function of the distance from the vortex axis (radius).
Vortex parameters as in figures 2 and 15, that is, Γ = 50, t = 10 and ν = 0.01. Black line: vortex azimuthal
velocity vLO, (A9); red line: half of the vorticity ωLO/2, (A10); green line: pseudovorticity corresponding to
the open green circles in the main panel of figure 2, estimated as described in that figure caption, that is, using
directly (2.1); open orange circles: pseudovorticity θ(x0; R), (A6), with R = 0.3.

contribute negatively, and the intersection of D(x0, R) with the positively contributing
region is larger than that with the negatively contributing region. Therefore, if the function
g(r2)/r2 behaves nearly as a constant within D(x0, R), the contribution of the positive
region (outside that circle) will be larger than that of the negative region (within that
circle), and the pseudovorticity will be positive. However, if the function g(r2)/r2 is
considerably larger in the negative region, the pseudovorticity can become negative. Since
the function g(r2)/r2 is here assumed to be smooth, the pseudovorticity should typically
be positive, as indicated in figure 16 (open orange circles).

It then follows that the sign changes of the pseudovorticity displayed in figures 2 and
15 – see also figure 4(b) – are most likely an effect of the discrete particle distributions
employed for the θ estimates based on (2.1), especially if one also considers that the
analytical results reported here are only valid for uniform particle distributions, that is,
we set f = N/(πR2) in (A1). Indeed, we would like to address analytically the effect of
particle distribution non-uniformities in future studies.

Another possible line of future research could be based on the following result, which
can be considered a generalization of the analytical relation between θ and ω reported
by Švančara et al. (2020). The latter was obtained by expanding the fluid velocity to the
second order with respect to the difference (r′ − r). If, in a similar fashion, we expand it
to the fourth order, we get

θ(r; R) = ω(r)
2

+ R2

32

ω(r) (A13)

for a smooth velocity field, in the close vicinity of the inspection point r, for radially
symmetric particle distributions. The pseudovorticity is thus approximately a quadratic
function of R and its behaviour depends on the Laplacian of the vorticity at the inspection
point. It then follows that, if θ(r; R) is known, one could estimate the flow vorticity
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ω(r) using (A13). The latter estimate could be performed by numerical means, or even
analytically, and this could be the focus of future studies, assessing in more detail the
effect of R on the relation between θ and ω.
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ŠVANČARA, P., HRUBCOVÁ, P., ROTTER, M. & LA MANTIA, M. 2018 Visualization study of thermal
counterflow of superfluid helium in the proximity of the heat source by using solid deuterium hydride
particles. Phys. Rev. Fluids 3, 114701.
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