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Internal wave generation by tidal flow over a
two-dimensional ridge: energy flux asymmetries

induced by a steady surface trapped current
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(Received 20 December 2016; revised 1 September 2017; accepted 31 October 2017;
first published online 11 December 2017)

The effects of a surface trapped steady background current on internal waves
generated by tidal currents oscillating over a small symmetric ridge are investigated
using a two-dimensional primitive equation model. A rigid lid is used with a
linearly stratified fluid and the effects of rotation are not considered. We consider
uni-directional background currents Ū(z) > 0 confined to a surface layer lying well
above the ridge. The current introduces asymmetries in the generated wave field. For
sufficiently narrow ridges the upstream energy flux is larger than the downstream
flux while the opposite is the case for sufficiently wide ridges. The total energy
flux radiating away from the ridge is not significantly affected by the current. Mean
second-order currents and pressure fields are shown to make important contributions
to the total energy flux. A first-order linear theory, valid for a general stratification
and surface current, which accurately predicts the wave field is also developed.

Key words: geophysical and geological flows, internal waves

1. Introduction
In this paper we investigate the effects of a steady, surface trapped background

current Ū(z) on the two-dimensional generation of oceanic internal waves by tidal
currents oscillating over a symmetric ridge in the weakly nonlinear regime. Figure 1(a)
shows the wave-induced horizontal currents after 15 tidal periods from a fully
nonlinear numerical simulation (details of the simulations are provided in § 2). The
background current lies above z/H = −0.3, z and H being the vertical coordinate
and deep water depth respectively, and is directed to the right. Obvious asymmetries
in the wave field are apparent. Mode-one waves have propagated outside the region
shown. Mode-two waves have reached x/H ≈ −80 and 120 in the upstream and
downstream directions. Internal wave beams are much stronger in the upstream
direction and there is a fan-like structure near the surface downstream of the ridge
(x/H between 0 and 80). Figure 1(b) shows the wave-induced horizontal baroclinic
currents predicted by linear theory (§ 4) in which the contributions for each mode
are restricted to lie within the distance they would propagate in 15 tidal periods at
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FIGURE 1. Comparison of wave-induced dimensionless horizontal current fields U/(NH)
at t = 15T from a numerical simulation (a) and theory (b). Here N is the constant
buoyancy frequency and H the deep water depth. Panel (c) compares the wave-induced
horizontal currents at the surface (black, simulation; red, theory). Narrowest ridge from
set 4 (see table 1): h0/H = 0.1, a/H = 1.2, (Us/(NH), zs/H, ds/H)= (0.1,−0.3, 0.08).

their group velocity. The theory predicts the wave field quite well although there are
differences. Figure 1(c) compares the simulated and theoretical wave-induced surface
currents showing excellent agreement.

Upstream of the ridge the wavelength of the beams is approximately 11.4 versus
the mode-one wavelength of 12.5. The strong horizontal currents where the beam
reaches the surface are clearly detectable in figure 1(c). Because the wavelengths of
the different modes are non-commensurable due to the background current, the internal
wave beams that form lose their coherence with distance from the ridge. This also
explains the difference in beam wavelength from the mode-one wavelength.

Figure 2 shows the mean wave-induced horizontal currents for a slightly wider
ridge. The structure of the mean currents upstream and downstream of the ridge
are very different. The quasi-periodic pattern upstream (left) of the ridge is reflected
in the energy flux contributions (see § 6). The mean current upstream of the ridge
is large at the surface, where it is always positive, at the base of the shear layer,
and where beams reflect off the bottom. At the base of the shear layer there are
alternating patches of positive and negative mean currents with the latter higher up
than the former. This is consistent with beams reaching the base of the current and
exerting a stress which raises the base of the current slightly, hence reducing the
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FIGURE 2. Mean horizontal velocity perturbation (dimensionless). Similar case to that
depicted in figure 1 (slightly wider ridge from set 4 with a/H = 1.8: see table 1).
Averaging done over t∈ [36T, 40T], where T is the tidal period, in a Lagrangian reference
frame moving with the barotropic tidal currents. Green–blue colours are negative currents,
red–orange are positive currents. Contour interval 10−5.

mean current, and lowering the base of the current slightly between the beams, hence
increasing the mean current. To the left of the ridge the maximum and minimum
mean currents are approximately 10−4, approximately a factor of 50 less than the
currents associated with the waves of tidal frequency (see figure 1). In dimensional
terms they are approximately 0.4 mm s−1. Downstream of the ridge the mean currents
are about twice as strong.

Figures 1 and 2 show significant asymmetries in the wave field upstream and
downstream of the ridge. Associated with this are asymmetries in the energy fluxes
which is the primary focus of this paper. Somewhat surprisingly, in the parameter
regime we consider, for wide ridges the upstream energy flux is smaller than the
downstream energy flux while the opposite is the case for narrow ridges. In the
presence of a strong background current the kinetic energy flux makes an important
contribution to the total flux and fluxes associated with the mean wave-induced fields
are also significant.

Internal wave generation by tide–topography interactions has received a lot of
attention over the past couple of decades. This process is estimated to transfer energy
from the barotropic tide to internal tides at a rate of approximately 1 TW and accounts
for approximately 25 %–30 % of the barotropic tidal energy dissipation (Egbert & Ray
2001; Nikurashin & Ferrari 2013; Waterhouse et al. 2014). It is also the source of
approximately 50 % of the internal wave energy in the ocean, approximately of equal
importance to wind forcing. Accurate modelling or parametrizations of this process
are necessary for modelling global barotropic tides (Lyard et al. 2006; Buijsman et al.
2016) and for taking proper account of mixing by internal waves which is believed to
be essential for the large scale overturning circulation in the ocean (Munk & Wunsch
1998; Wunsch & Ferrari 2004; Nikurashin & Ferrari 2013). Energy transferred to
the internal wave field is partly dissipated near the bottom above rough topography
(Polzin et al. 1997; Waterhouse et al. 2014; Lefauve, Muller & Melet 2015; Ferrari
et al. 2016) but can propagate large distances before dissipating when the waves are
primarily generated by isolated bathymetric features (Falahat et al. 2014). Internal
tide generation in the deep ocean was reviewed by Garrett & Kunze (2007).

Geostrophic currents also interact with bathymetry to generate internal lee waves
injecting approximately 0.2–0.4 TW into the internal wave field (Scott et al. 2011;
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Nikurashin & Ferrari 2013) predominantly in the Southern Ocean where the
interaction of the Antarctic Circumpolar Current with bathymetry is an important
generator of internal waves.

Considering the ubiquitous presence of large scale currents and eddies in the
ocean many tide–topography interactions will inevitably involve background currents
although there have been few studies of this process. Pickering et al. (2015)
considered the effects of mean flows on wave generation and energy fluxes in
Luzon Strait during periods when the Kuroshio Current passes through the strait. The
focus of their study was on energy fluxes at the generation site, not on energy fluxes
in the far field. The Indonesian Throughflow passing through Lombok Strait (Aiki,
Matthews & Lamb 2011; Matthews et al. 2011) and the South Equatorial Current
passing over the Mascarene Plateau (da Silva, New & Magalhaes 2011) have been
shown to affect the generation of internal solitary waves. Another example includes
exchange flows through the Straits of Gibraltar. All of these examples involve large
sills which interact directly with the currents.

The effects of a mean flow over ridge-like topography on internal wave generation
by tide–topography interactions have not, to our knowledge, been previously
considered in numerical or theoretical studies. Here we address this lack by
considering the effects of a background current Ū(z) confined to a surface layer
lying well above the ridge so that there is no direct interaction between the current
and the bathymetry which would result in the co-generation of lee waves. We conduct
numerical simulations using a fully nonlinear two-dimensional model. For simplicity
our background currents satisfy Ū(z)> 0 and a linear stratification is used.

A linear theory is also developed to predict the internal waves generated by the
tide–topography interactions. Our theory is an extension of that presented by Bell
(1975a,b) and Khatiwala (2003). Bell (1975b) considered an infinitely deep ocean
predicting the vertically propagating internal waves generated by weak oscillating
currents over a small subcritical isolated topographic feature. Khatiwala (2003)
extended this method to a finite depth ocean with a linear stratification. We extend
his method to an arbitrary stably stratified shear flow with the restriction that the
current lies above the bathymetry. One cost of this extension is that fewer results
can be computed analytically. The theory is valid for small amplitude, subcritical
bathymetry and small tidal excursion distances. Neither the theory nor the numerical
simulations include the effects of rotation as this would require a transverse pressure
gradient in geostrophic balance with the background current. While rotation could
be included in the numerical simulations, it implies a density field that varies in the
cross-current direction, making the problem three-dimensional.

Section 2 describes the numerical model and the simulations. Energy flux, as
calculated in the nonlinear, non-hydrostatic numerical simulations, is discussed in
§ 3 and the linear theory is developed in § 4. Results of convergence and validation
tests are given in § 5 while the main results are presented in § 6 followed by the
conclusions and summary in § 7.

2. Numerical model and model set-up

We use the two-dimensional non-hydrostatic Internal Gravity Wave model (Lamb
1994, 2007) to solve the incompressible Euler equations under the Boussinesq
approximation in a non-rotating reference frame. The model equations are

ut + uux +wuz =−px, (2.1a)
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196 K. G. Lamb and M. Dunphy

FIGURE 3. Schematic of the numerical set-up. Ū is a steady background current with
surface current Us, base at z= zs and ds is a measure of the width of the shear layer. h0
and a are the ridge amplitude and width parameters, ρ̄ the linear background stratification
and U0 cos(ω0t) the background tidal current. The shape of the current and hill amplitude
correspond to set 2 simulations.

wt + uwx +wwz =−pz − ρg, (2.1b)
ρt + uρx +wρz = 0, (2.1c)
∇ · u= 0. (2.1d)

Here u = (u, w) is the velocity in the vertical xz-plane, ρ is the density and p is
the pressure, both of which have been scaled by the reference density ρ0. The rigid
lid approximation is used with the surface at z= 0. We consider waves generated by
tidal flow over an isolated topographic feature at z=−H + h(x) such that h(x)→ 0
as x→±∞. The model uses Godunov flux limiting which acts as an implicit large
eddy simulation model (Bell, Colella & Glaz 1989). Terrain following coordinates are
used which leads to higher vertical resolution in shallower water. In these simulations
the time step is fixed.

Figure 3 shows a schematic of the numerical set-up. The simulations were
conducted using dimensional variables with the deep ocean in mind. We used a
fluid of depth H = 5000 m in the far field and Gaussian ridges

h(x)= h0e−(x/a)
2
, (2.2)

which have a maximum slope of

s=

√
2
e

h0

a
≈ 0.86

h0

a
. (2.3)

To simplify the calculation of available potential energy for the theoretical analysis, we
restrict ourselves to a uniform stratification with buoyancy frequency N= 10−3 s−1 for
which an analytical expression for the available potential energy exists.

We consider background currents of the form

Ū(z)=
Us

4

(
1+ tanh

(
z− zs

ds

))2

, (2.4)

with zs and ds chosen so that the current lies above the ridge and Us is the current
at the surface. The minimum Richardson number is

Ri=
N2

max (Ū′)2
=

d2
s

U2
s

(
27
16

)2

× 10−6, (2.5)
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which is above 1/4 in all simulations so that the background state is stable. The
model is forced by specifying ut at the left boundary chosen to drive a barotropic
tidal current

Ūb(t)=U0 cos(ω0t) (2.6)
far from the ridge and, consistent with the forcing, the simulations are initialized at
peak rightward flow with initial currents

u=U0
H

H − h(x)
+ Ū(z),

w=−U0
H

(H − h(x))2
h′(x)z.

 (2.7)

The initial flat isopycnals are near their mean position. The initial flow is divergence
free but has some weak vorticity. Test cases showed similar results if the simulations
were started from rest with u=U0 sin(ω0t) at the left boundary. We use an M2 tidal
frequency with a period of T = 12.42 h (44 712 s) for which the frequency is ω0 ≈

1.4053 s−1.
The criticality of the slope, defined as the ratio of the bottom slope to the slope of

an internal wave beam of frequency ω0, has a maximum value of

γ = s

√
N2 −ω2

0

ω0
≈ 6.06

h0

a
. (2.8)

Because the length of the computational domain is chosen to be long enough
so that no waves reach either lateral boundary the problem is defined by nine
dimensional parameters: three associated with the geometry of the domain, (H, h0,
a); three associated with the background current, (Us, zs, ds); two associated with
the tidal current, (U0, ω0); and N, the buoyancy frequency of the linear background
stratification. There are seven dimensionless parameters. Using the ocean depth
H= 5000 m and the inverse buoyancy frequency N−1

= 1000 s as the length and time
scales, the dimensionless parameters can be chosen as a/H, h0/H, ds/H, zs/H, Us/NH,
ω0/N and U0/NH. It is impossible to explore all of parameter space. For comparisons
with the linear theory we consider the near-linear limit by considering subcritical
slopes and by keeping the dimensionless ridge amplitude h0/H and tidal excursion
distance (U0/ω0)/H small. We focus on the effects of varying the properties of the
background current and the width of the ridge which affects the modal composition of
the wave field. We also take ω0/N= 0.14 so we are in the near-hydrostatic limit. The
water depth H, the tidal current parameters U0 and ω0 and the buoyancy frequency
N are fixed.

Eight simulation sets were done between which the ridge amplitude and the
parameters of the background current were varied. For each set 11 ridge widths were
used, namely a/H = 1.2, 1.4, 1.6, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4 and 6.0. Parameter
values for each set are provided in table 1 along with some key non-dimensional
parameters, including the Froude number Fr = U0/c1, which is the ratio of the
maximum current to the linear mode-one long wave phase speed in the absence of a
background current (c1=

√
N2 −ω2

0H/π≈NH/π), and the maximum slope criticality,
which occurs for the narrowest ridge. The minimum value of γ in each set occurs
for the widest ridge and is one fifth of the maximum value. The dimensionless tidal
excursion distance is 0.071 in all cases.

Results are presented in non-dimensional terms using the water depth H as the
length scale, the inverse buoyancy frequency N−1 as the time scale and NH as the
velocity scale. Times are reported in tidal periods.
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Set h0 Us zs ds
h0

H
max{γ }

zs

H
ds

H
Ri

Us

NH
Fr =

Us

c1
(m) (m s−1) (m) (m)

1 250 0.5 −1500 300 0.05 0.25 −0.3 0.06 1.03 0.1 0.32
2 500 — −1500 300 0.1 0.50 — — — — —
3 1000 — −1500 300 0.2 1.01 — — — — —
4 500 — −1500 400 0.1 0.50 — 0.08 1.82 — —
5 500 — −2500 300 — — −0.5 0.06 — — —
6 500 0.2 −1500 400 — — −0.3 0.08 6.41 0.04 0.13
7 500 0.8 −1500 300 — — — 0.06 0.40 0.16 0.51
8 500 — −2500 300 — — −0.5 — — — —

TABLE 1. Parameters for the simulation sets. For each set of runs the ridge width varies
over a/H ∈ [1.2, 1.4, 1.6, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6]. The maximum slope criticality
for each set, max{γ }, is for a/H=1.2. c1=H

√
N2 −ω2

0/π≈NH/π is the mode-one phase
speed in the absence of the background current. The dashes indicate that the value is the
same as that directly above.

3. Energy conservation and energy flux
In the following we work in an accelerating reference frame moving with the far-

field barotropic tidal current Ūb(t). In this reference frame the horizontal coordinate is

ξ = x−
∫ t

0
Ūb(t′) dt′ = x−

U0

ω0
sin(ω0t) (3.1)

and the horizontal current is

ũ(ξ , z, t)= u(x(ξ , t), z, t)− Ūb(t). (3.2)

We define a new pressure term via

p̃= p(x(ξ , t), z, t)+
dŪb

dt
ξ . (3.3)

This removes the part of the horizontal pressure gradient which drives the barotropic
tide in the far field. More generally, let tildes denote functions in the new reference
frame, i.e. w̃(ξ , z, t)=w(x(ξ , t), z, t), etc. Under this change of variables the governing
equations in the new reference frame are identical to (2.1a)–(2.1d) except for the
addition of tildes to all dependent variables and with derivatives with respect to x
replaced by derivatives with respect to ξ . The lower boundary is now moving and
is at

z=−H + h̃(ξ , t)=−H + h(x(ξ , t))=−H + h
(
ξ +

∫ t

0
Ūb(t′) dt′

)
(3.4)

and the bottom boundary condition is

ũ · n̂=−(Ūb(t), 0) · n̂ at z=−H + h̃(ξ , t). (3.5)

Henceforth we will drop the tildes except for h̃ as both h̃(ξ , t) and h(x) will be used.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.800


IW generation with background current 199

Neglecting viscous and diffusive effects the energy equation is

∂

∂t
(Ek + Ea)+∇ · (u(Ek + Ea + pd))= 0, (3.6)

where pd is the pressure perturbation (or disturbance) relative to the hydrostatic
pressure of the undisturbed flow p̄(z),

Ek =
1
2(u

2
+w2) (3.7)

is the kinetic energy density (all energies are per unit mass) and

Ea(ξ , z, t)= g
∫ z∗(ξ ,z,t)

z
(ρ̄(s)− ρ(ξ, z, t)) ds (3.8)

is the available potential energy density (Holliday & McIntyre 1981; Shepherd 1993).
Here ρ̄(z) is the reference density and z∗(ξ , z, t) is the height of the fluid particle
at (ξ , z, t) in the reference stratification (Scotti, Beardsley & Butman 2006; Lamb
2007, 2008; Lamb & Nguyen 2009). We use the background stratification as the
reference density which is appropriate for calculating the available potential energy
in an infinitely long domain (Lamb 2008). It avoids sorting the density field which
is computationally expensive. Since the background stratification is uniform, the
available potential energy density has a simple analytic expression, namely

Ea =
1
2

g2ρ ′2

N2
, (3.9)

where ρ ′ is the density perturbation.
Let

u= Ū(z)+ u′, (3.10)

where u′ is the horizontal velocity perturbation. Far from the ridge u′ is the wave-
induced current; however, over the ridge it includes a barotropic contribution due to
the constriction of the tidal flow over the ridge.

We split the kinetic energy density into three terms

Ek = Ek0 + Ek1 + Ek2, (3.11)

where

Ek0 =
1
2 Ū2,

Ek1 = Ūu′,

Ek2 =
1
2(u
′2
+w2)

 (3.12)

are the contributions to the kinetic energy density which are of order zero, one and
two in the perturbation velocities. We will refer to

Ekp = Ek1 + Ek2, (3.13)

as the perturbation kinetic energy density. Since Ū is independent of time the energy
equation can be written as

∂

∂t
(Ekp + Ea)+∇ · (u(Ek + Ea + pd))= 0. (3.14)
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The perturbation kinetic energy can be negative if Ek1 dominates and is negative
(Lamb 2010). We do not work with the positive definite wave energy Ek2+Ea as this
is not a conserved quantity. Use of wave energy, which is the energy associated with
the wave in a reference frame moving with the background current, has proved to be
a useful quantity in the context of wave packets propagating through a slowly varying
background field. As a wave packet moves through a sheared background current wave
energy is exchanged with the slowly varying background current and wave action
is conserved (Broutman, Rottman & Eckermann 2004). In our situation the majority
of the energy is in low vertical modes which have wavelengths comparable to the
water depth and the background sheared current does not vary slowly compared to
this length scale.

In the following we use bars to indicate energy values integrated over a domain

D= [ξl, ξr] × [−H + h̃(ξ , t), 0], (3.15)

which is bounded by stationary lateral boundaries at ξ = ξl and ξr, by the moving
bottom at zb = −H + h̃(ξ , t) and the rigid lid at z = 0. We assume that the lateral
boundaries are always far from the ridge where the water depth is H. Let

Ē=
∫∫

D
Ekp + Ea dξ dz (3.16)

be the total perturbation energy. Taking the time derivative and making use of (3.14)
and the boundary conditions ũ · n̂=0 along the upper boundary and u · n̂ ds=−Ūbh′ dx
along the lower boundary, leads to

dĒ
dt
= (KEf + APEf +W)

∣∣∣∣ξ`
ξr

+ Ūb(t)
∫ ξr

ξl

pbh′(x(ξ , t)) dξ, (3.17)

where pb(ξ , t)= pd(ξ ,−H+ h̃(ξ , t), t) is the pressure perturbation evaluated along the
bottom. Here

KEf =

∫ 0

−H
uEk dz,

APEf =

∫ 0

−H
uEa dz

 (3.18)

are the vertically integrated kinetic and available potential energy flux densities, and

W =
∫ 0

−H
upd dz (3.19)

is the rate work is done by the pressure perturbation. We will refer to this as the work
term. The total energy flux through a horizontal location x is Ef = KEf + APEf +

W. The last term on the right-hand side of (3.17) is the generation, or conversion,
term G (Khatiwala 2003; Kelly, Nash & Kunze 2010), which after integrating by parts
(assuming h(ξl)= h(ξr)= 0) can be written as

G= Ūb(t)
∫ ξr

ξl

pbh′(x(ξ , t)) dξ =−Ūb(t)
∫ ξr

ξl

(pξ + pzh′)
∣∣∣∣

zb

h(x(ξ , t)) dξ . (3.20)
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The latter form is useful because the numerical model solves for the pressure
gradients, not the pressure. Equation (3.17) states that the rate of change of energy
in the domain D is balanced by the flux of energy through the lateral boundaries
plus the rate energy is injected into the system through the generation term which in
the moving reference frame is the work done moving the topography.

In linear theory in the absence of a background current (3.17) would simplify to

dĒ
dt
=W

∣∣∣∣ξ`
ξr

+ Ūb(t)
∫ ξr

ξl

pdh′(x(ξ , t)) dξ (3.21)

because Ek and Ea are second-order, and pd is first-order, in the perturbations. The
energy fluxes KEf and APEf , which would then be third-order in amplitude, do not
appear in linear theory. This is not the case when there is a background current. As
the only flux term that appears in (3.21) is W, this term is often called the energy
flux (Llewellyn Smith & Young 2002; Khatiwala 2003; Nash, Alford & Kunze 2005).

Using u= Ū(z)+ u′ we can split KEf into terms of order 0–3 in the perturbation
velocity fields via

KEf =
1
2

∫ 0

−H
Ū3 dz+

3
2

∫ 0

−H
Ū2u′ dz

+
1
2

∫ 0

−H
Ū(3u′2 +w2) dz+

1
2

∫ 0

−H
u′(u′2 +w2) dz. (3.22)

The first term can be ignored as it is independent of x and t hence the values at ξl
and ξr cancel. Henceforth KEf excludes this term. We split the remaining contributions
into parts that are first-, second- and third-order in the perturbation velocities:

KEf 1 =
3
2

∫ 0

−H
Ū2u′ dz,

KEf 2 =

∫ 0

−H
Ū
(

3
2

u′2 +
1
2

w2

)
dz,

KEf 3 =
1
2

∫ 0

−H
u′(u′2 +w2) dz.


(3.23)

In our simulations the third-order term and the contribution from w2 to the second-
order term are negligible.

The work term W can be split into two terms via

W =
∫ 0

−H
Ūpd dz+

∫ 0

−H
u′pd dz=W1 +W2, (3.24)

with W1 and W2 being of first and second order in the perturbation fields pd and u′.
Both make leading-order contributions to the tidally averaged work term because of
the generation of second-order mean pressure fields.

Linear hydrostatic theory for linear stratifications in the absence of a background
current predicts that the energy fluxes scale with

F0 =
1
2 NU2

0h2
0, (3.25)

along with other factors depending on, for example, the ridge shape (Llewellyn Smith
& Young 2002; Garrett & Kunze 2007), hence we will non-dimensionalize our energy
fluxes by scaling them by F0.
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4. Linear theory

In this section we develop a linear theory to predict the waves that are generated
by periodic tidal flow over an isolated bathymetric feature in the presence of a steady
surface trapped background current restricted to lie above the bathymetry so that
waves are generated solely by tide–topography interactions. As mentioned above
rotational effects are not included. The stratification and current are assumed to be
stable (Richardson number greater than 1/4) but are otherwise arbitrary. We follow
the procedure used by Khatiwala (2003) and assume that the tidal flow consists
of a single tidal constituent and seek periodic solutions. Multiple constituents can
be considered via linear superposition. One difference between the fully nonlinear
numerical simulations and the linear theory is that the former is an initial value
problem while the latter is a periodic solution which can be viewed as the wave field
in the limit t→∞.

As in the previous section we use a reference frame moving with the far field tidal
current Ūb(t). We assume small amplitude topography and waves and linearize about
a steady background horizontal current Ū(z). This leads to the well-known equation
for the vertical velocity(

∂

∂t
+ Ū

∂

∂ξ

)2

∇
2w−

d2Ū
dz2

(
∂

∂t
+ Ū

∂

∂ξ

)
wξ +N2(z)wξξ = 0, (4.1)

where the buoyancy frequency N is given by

N2(z)=−g
dρ̄
dz
, (4.2)

which for the theory is an arbitrary non-negative function of z. The linearized bottom
boundary condition is

w= Ūb(t)h̃ξ = Ūb(t)h′(x(ξ , t)) at z=−H. (4.3)

Searching for solutions of the form

w= ei(kξ−ωt)φ(z) (4.4)

we obtain the Taylor–Goldstein equation for the vertical structure φ(z),

φ′′ +

(
N2(z)

(Ū(z)− c)2
−

Ū′′(z)
Ū(z)− c

− k2

)
φ = 0, (4.5)

where c=ω/k and primes denote differentiation with respect to z. Solutions satisfying
the homogeneous boundary conditions φ(−H) = φ(0) = 0 consist of two types: the
discrete spectrum, or eigenmodes, {φ±n , c±n } with phase speeds c+n > max{Ū} or
c−n <min{Ū}; and the continuous spectrum with c ∈ [min{Ū},max{Ū}]. Figure 4 is a
schematic showing the discrete and continuous spectrums when Umin < 0<Umax.

We use the Fourier transform defined as

f̂ (k)=
∫
∞

−∞

f (ξ)e−ikξ dξ (4.6)
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0

FIGURE 4. Spectrum of the Taylor–Goldstein equation for frequency ω>0. Shown are the
first four positive and negative eigenvalues k+n and k−n (the discrete spectrum) with limit
points at ω/Umax and ω/Umin respectively. Also shown is point in the continuous spectrum
kc = ω/U(z) for a value of z for which 0< U(z) < Umax. The grey bars indicate regions
where the continuous spectrum lies: as z varies across the water depth kc sweeps out the
grey regions k<ω/Umin and k>ω/Umax. As Umin→ 0 the limit point at ω/Umin→−∞.

to transform the bottom boundary condition (4.3), yielding (Bell 1975a; Khatiwala
2003)

ŵ(k,−H, t)=−ĥ(k)
∞∑

n=−∞

inω0Jn

(
−kU0

ω0

)
e−inω0t, (4.7)

where the tidal current is
Ūb(t)=U0eiω0t (4.8)

and Jn is the Bessel function of the first kind of order n. Based on this we look for
a series solution for ŵ(k, z, t) of the form

ŵ(k, z, t)=−
∞∑

n=−∞

inω0ĥ(k)Jn

(
−kU0

ω0

)
Wn(k, z)e−inω0t, (4.9)

where the functions Wn(k, z) are solutions of the Taylor–Goldstein equation for waves
of frequency nω0,

Ln[Wn] ≡W ′′n +
(

k2N2(z)
(nω0 − kŪ(z))2

+ k
Ū′′(z)

(nω0 − kŪ(z))
− k2

)
Wn = 0, (4.10)

satisfying the boundary conditions

Wn(k, 0)= 0,
Wn(k,−H)= 1.

}
(4.11)

So far the derivation has followed Khatiwala (2003) who considered constant N and
did not include background currents. Under these conditions the Taylor–Goldstein
equation can be solved analytically. With a sheared background current or non-
constant N(z) equations (4.10)–(4.11) must be solved numerically. To do so we
numerically solve the initial value problem

Ln[φn] = 0,
φn(k, 0)= 0,
φ′n(k, 0)= 1

 (4.12)

to get φn(k, z) on z ∈ [−H, 0] and then let

Wn(k, z)=
φn(k, z)
φn(k,−H)

. (4.13)
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Here k varies continuously over the real line. The values of k for which φn(k,−H)= 0
give the eigenmodes, for which Wn is singular.

Taking the inverse Fourier transform of (4.9) we obtain

w(ξ , z, t)=
∞∑
−∞

n 6=0

−inω0

2π
e−inω0t

∫
∞

−∞

ĥ(k)Jn

(
−kU0

ω0

)
φn(k, z)
φn(k,−H)

eikξ dk. (4.14)

The contributions to the integral are of two types: (i) contributions from the poles
where φn(k,−H)= 0 and (ii) possibly from the continuous spectrum. Without loss of
generality we will assume that Umin = min{Ū} 6 0 and Umax = max{Ū} > 0. In this
paper we do not consider the continuous spectrum as the wave field appears to be
well predicted by the discrete spectrum alone.

4.1. Contribution from the discrete spectrum
For nω0/Umin < k < nω0/Umax, or, if Umin = 0 as is the case in our numerical
simulations, for −∞ < k < nω0/Umax, the contributions to the integral from the
discrete spectrum come from the poles of the integrand, i.e. the values of k for which
φn(k, −H) = 0. The corresponding φn are the eigenmodes. Let k+nm, m = 1, 2, . . .
be the positive zeros of φn(k,−H) and let k−nm, m= 1, 2, . . . be the negative zeros.
Ordering them in decreasing phase speed magnitude we have

k+n1 < k+n2 < k+n3 < · · · with k+nm→
nω0

Umax
as m→∞ (4.15)

and
−k−n1 <−k−n2 <−k−n3 < · · · with −k−nm→−

nω0

Umin
as m→∞. (4.16)

In our examples with Umin=0 we have k−nm→−∞ as m→∞. In the above n refers to
the wave harmonic, i.e. waves of frequency nω0, while m is the eigenmode index. For
positive/negative n, the wavenumbers k+nm correspond to rightward/leftward propagating
waves. This is reversed for wavenumbers k−nm.

If {φn(k, z), k} is the solution of the Taylor–Goldstein equation subject to boundary
conditions (4.12) for ω= nω0 then {φn(k, z),−k} is a solution for ω=−nω0 since the
problem for φ is invariant under concurrent changes of the signs of ω and k. Thus

k+nm =−k−
−nm (4.17)

and
φn(k, z)= φ−n(−k, z). (4.18)

Differentiating the latter gives

∂φn

∂k
(k, z)=−

∂φ−n

∂k
(−k, z). (4.19)

Rightward propagating waves. Contributions to rightward propagating waves come
from the positive eigenvalues for frequencies nω0 > 0 and from the negative
eigenvalues for frequencies −nω0 < 0 (Khatiwala 2003). Use of the residue theorem
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and the symmetries given above leads to the following contributions to u and w from
the discrete spectrum:

wds(ξ , z, t)= 2
n0∑

n=1

∞∑
m=1

nω0Jn

(
−k+nmU0

ω0

)
φn(k+nm, z)

∂φn

∂k
(k+nm,−H)

Re{ĥ(k+nm)e
i(k+nmξ−nω0t)

}

 ,

(4.20)

uds(ξ , z, t)= 2
n0∑

n=1

∞∑
m=1

nω0Jn

(
−k+nmU0

ω0

)
φ′n(k

+

nm, z)
∂φn

∂k
(k+nm,−H)

Re

{
i
ĥ(k+nm)

k+nm

ei(k+nmξ−nω0t)

}
(4.21)

for ξ > 0. Here φ′n denotes differentiation with respect to z.

Leftward propagating waves. For the leftward propagating waves we have

wds(ξ , z, t)=−2
n0∑

n=1

∞∑
m=1

nω0Jn

(
−k−nmU0

ω0

)
φn(k−nm, z)

∂φn

∂k
(k−nm,−H)

Re{ĥ(k−nm)e
i(k−nmξ−nω0t)

}

 ,

(4.22)

uds(ξ , z, t)=−2
n0∑

n=1

∞∑
m=1

nω0Jn

(
−k−nmU0

ω0

)
φ′n(k

−

nm, z)
∂φn

∂k
(k−nm,−H)

Re

{
i
ĥ(k−nm)

k−nm

ei(k−nmξ−nω0t)

}
(4.23)

for ξ < 0.
The sum over n has an upper limit because eigenmodes only exist for a finite

number of frequencies (e.g. nω0 <N for N constant and Ū(z)= 0).
To cast the results into non-dimensional terms, because the eigenmodes are scaled

so that φ′n(k, 0)= 1, we take φ′n to be dimensionless. Denoting dimensionless variables
with a tilde we have

(φn, ĥ, k, ω0,U0)=

(
Hφ̃n,H2 ˆ̃h,

k̃
H
,Nω̃0,NHŨ0

)
. (4.24)

Figure 5 compares phase speeds for the first 20 modes for three different
background currents (the maximum difference between the phase speeds and
corresponding group velocities is less than 2 %). For the rightward propagating
waves the phase speeds increase as current strength Us or depth −zs is increased,
decreasing monotonically to Us as the mode number m→∞. The phase speeds of
the upstream propagating waves decrease as the current is strengthened. They are
much less sensitive to the strength or depth of the current. The phase speeds are not
sensitive to the shear layer thickness ds. Sample eigenmodes are shown in figure 6.
For the leftward propagating modes k < 0 and ω0 − Ūk is larger in the current than
beneath it, hence the higher modes oscillate more rapidly beneath the current. For
the rightward propagating modes k > 0 and ω0 − Ūk is smaller in the current. The
higher modes now oscillate more rapidly in the current.
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5 10 15 20

Mode

0

0.1

0.2

0.3

0.4
No current

FIGURE 5. Wave phase speeds for waves of tidal frequency for various background
currents. Horizontal lines indicate limiting values of 0.1 and 0.16. Solid curves are phase
speeds of rightward propagating waves. Dashed are phase speeds (absolute value) of
leftward propagating waves.
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−3−2−1 0 1 2 3

(d)

FIGURE 6. Eigenmodes (a,c) 1, 2, 4 and 8 and their derivatives (b,d) for waves of tidal
frequency for background current used in sets 1–3 for which (Us/(NH), zs/H, ds/H) =
(0.1,−0.3,−0.06). (a,b) Leftward propagating waves. (c,d) Rightward propagating waves.

The presence of the current has a significant impact on the modal wavenumbers
which in turn affects the relative contributions of the different modes. Contributions
to wds come from ĥ(k) which depends only on the properties of the bathymetry,
Jn(−kU0/ω0) which depends on the tidal current amplitude U0 and frequency ω0, and
on the eigenmodes which are determined by the stratification and background currents.
We now briefly consider the contributions from some of the factors in expressions
(4.20)–(4.23).

The Gaussian ridge (2.2) has Fourier transform

ĥ(k)=
√

πah0e−((a
2k2)/4). (4.25)

Figure 7(a) shows f1 = ĥ(k)/ĥ(0) for a/H = 1.2, 1.8, 2.4, 3.0 and 3.6. As a/H
increases the spectrum gets narrower. The values for the discrete spectrum for waves
of tidal frequency from set 4 (see table 1) are indicated with red stars. Rightward
propagating waves (k > 0) have limiting wavenumber klimH = (ω0/Umax)H ≈ 1.4. For
a/H = 1.2 and 1.8 all eigenmodes make a significant contribution. For the widest
topography only the first 3 eigenmodes do. For the leftward propagating waves
k−1m→−∞ as m→∞ and fewer eigenmodes make a significant contribution.
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These values are multiplied by J1(−(kU0/ω0)). In our case U0=Us/10 so this factor
is equal to J1(−(k/10klim))≈ k/20klim. Figure 7(b) shows f2= ĥ(k)J1(−(kU0/ω0))/ĥ(0).
The Bessel function makes contributions from higher harmonics negligible.

Including the contribution to the vertical velocity from ∂φn/∂k (figure 7c) we see
that for narrow ridges several modes make higher contributions than mode-one does.
The highest contributions to the horizontal velocity, which has an extra division by k,
are more skewed to the low modes. For a/H = 1.2 and 1.8 the largest contributions
for the rightward propagating waves are from modes 2, 3 and 1 (figure 7d). For wider
ridges mode-one dominates. Trends are similar for the leftward propagating waves.
The signs of the ∂φn/∂k terms alternate with mode number (we use absolute values
in the figure) and the actual relative contributions will depend on the relative phases
of the waves.

4.2. First-order linear energy flux
Formally, a small amplitude parameter ε denoting the ridge amplitude divided by the
water depth can be introduced. The generated waves depend on ε. Expanding the
perturbation velocity u in a perturbation expansion in powers of ε we have

u= u(ξ , z, t; ε)= εu(0)(ξ , z, t)+ ε2u(1)(ξ , z, t)+ · · · , (4.26)

with similar expansions for w, p and ρ. The above linear solution gives the O(ε)
terms. These terms are by assumption periodic in t, being comprised of terms with
frequencies nω0 < N. In particular their tidal average is zero. Nonlinear interactions
produce O(ε2) terms with non-zero tidal averages: mean second-order horizontal
currents and second-order mean density and pressure perturbations.

In terms of this perturbation expansion the work term, away from the ridge, is

W =
∫ 0

−H
upd dz= ε

∫ 0

−H
Ū(z)p(0) dz+ ε2

∫ 0

−H
(Ū(z)p(1) + u(0)p(0)) dz+O(ε3). (4.27)

Using 〈·〉 to denote tidally averaged values, we have

〈W〉 = ε2
∫ 0

−H
(Ū(z)〈p(1)〉 + 〈u(0)p(0)〉) dz+O(ε3) (4.28)

since the mean of p(0) is zero. Similarly, the tidally averaged kinetic energy flux is

〈KEf 〉 = ε
2
∫ 0

−H

(
3
2

Ū2(z)〈u(1)〉 +
1
2

Ū(z)〈3(u(0))2 + (w(0))2〉

)
dz+O(ε3), (4.29)

and the available potential energy flux is

〈APEf 〉 =

∫ 0

−H
Ū(z)〈Ea〉 dz= ε2

∫ 0

−H

g2

2N2
Ū(z)〈(ρ(0))2〉 dz+O(ε3). (4.30)

For Ū(z) 6=0 the leading-order mean kinetic and available potential energy fluxes are
of the same order as the work term and the mean second-order pressure and horizontal
currents contribute to the leading-order terms.
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FIGURE 7. Partial coefficients in expressions for theoretical values for uds and wds for
waves of tidal frequency (n = 1). (a) f1 = ĥ(k)/ĥ(0) for the Gaussian ridge. Curves
are for a/H = 1.2, 1.8, 2.4, 3.0 and 3.6. Red stars show the discrete spectrum
for background current (2.4) for Us/(NH) = 0.1, ds/H = 0.08 and zs/H = −0.3.
(b) f2 = (ĥ(k)/ĥ(0))J1(−kU0/ω0). (c) f3 = (ĥ(k)/ĥ(0))J1(−kU0/ω0)/|∂φ1/∂k|. (d) f4 =

(ĥ(k)/ĥ(0))J1(−kU0/ω0)/|∂φ1/∂k|k. In panels (c,d) values shown are for k±1m. In panels
(a,b) black curves show range of k values to which the discrete spectrum belong; grey
shows the range of the continuous spectrum.

Because the second and higher harmonics are very small in our simulations in the
following we assume all first-order terms are of tidal frequency. From linear theory
we can calculate

〈W〉lin =
∫ 0

−H
〈u(0)p(0)〉 dz=

M∑
i=1

M∑
j=1

∫ 0

−H
〈uipj〉 dz, (4.31)

where M is the number of modes included and ui and pi are the contributions of mode-
i to u(0) and p(0). Let

W l
ij =

∫ 0

−H
〈uipj〉 dz, (4.32)

with the superscript l denoting linear theory. From (4.21) and (4.23), using the fact
that ĥ is real for our symmetric Gaussian ridge, let

ui = Ai sin(θi(x, t))φ′i(z), (4.33)
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where θi(x, t) = kix − ω0t for all i since the modes are in phase at x = t = 0. Then
incompressibility gives

wi =−kiAi cos(θi)φi(z) (4.34)

and from the horizontal momentum equation

pi =
Ai

ki
sin(θi)[(ci − Ū)φ′i + Ū′(z)φi(z)] (4.35)

hence

uipj =
AiAj

2kj
[cos(θi − θj)− cos(θi + θj)][(cj − Ū)φ′j + Ū′(z)φj(z)]φ′i(z). (4.36)

Taking the time average we obtain

W l
ij =

AiAj

2kj
cos((ki − kj)x)

∫ 0

−H
[(cj − Ū)φ′j + Ū′(z)φj(z)]φ′i(z) dz. (4.37)

In the absence of a background current W l
ij=0 for i 6= j because the eigenmodes φ′i are

orthogonal for waves of a fixed frequency but in general this is not the case. Hence
the cross-terms W l

ij for i 6= j make a spatially varying contribution to the energy flux.
Similarly, the leading-order contribution to the kinetic energy flux from the leading-

order velocity perturbation is

〈KEf 〉lin =

∫ 0

−H

1
2

Ū〈3(u(0))2 + (w(0))2〉 dz

=

∑
i,j

3
4

AiAj cos((ki − kj)x)
∫ 0

−H
Ū(z)φ′iφ

′

j dz

+

∑
i,j

1
4

AiAjkikj cos((ki − kj)x)
∫ 0

−H
Ū(z)φiφj dz. (4.38)

The second term, which is the flux of vertical kinetic energy, is negligible in our
simulations. Let

KEl
fij =

1
4

AiAj cos((ki − kj)x)
∫ 0

−H
Ū(z)[3φ′iφ

′

j + kikjφiφj] dz. (4.39)

As for the work term, the cross-terms with i 6= j are generally non-zero. The linearized
density equation gives

ρi =
Ai

g
sin θi

N2

ci − Ū
φi, (4.40)

the leading-order contribution to the available potential energy flux is

〈APEf 〉lin =
∑

i,j

APEl
fij, (4.41)

where

APEl
fij =

1
4

AiAj cos((ki − kj)x)
∫ 0

−H

N2

(ci − Ū)(cj − Ū)
φiφj dz. (4.42)
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FIGURE 8. Accumulated percentage of total linear energy flux 100 ×
∑nm

j=1 El
fj/
∑16

j=1 El
fj

versus number of modes nm. (a) Leftward propagating waves. (b) Rightward propagating
waves. Results are shown for a/H = 1.2, 1.8, 2.4, 3.0 and 3.6. As a/H increases the
fraction of the total energy flux in the first mode increases.

Figure 8 shows the accumulated percentage of the total linear energy flux
contributed by the squared terms as a function of the number of modes, i.e.

∑M
i=1 El

fi
where El

fi =W l
ii+KEl

fii +APEl
fii . Only the squared terms with i= j are included because

the cross-terms vary with x with average values of zero. More modes are needed
to estimate the total energy flux for the downstream (rightward) propagating waves
than for the upstream (leftward) propagating waves and the narrower the ridge the
more modes are needed. As we will see below, the linear theory does not accurately
predict the energy flux for narrow ridges.

5. Validation tests
Validation tests were done by checking convergence and how well the energy

balance equation (3.17) is satisfied. Here we present results for the ridge with
a/H = 1.8 from set 4. The minimum Richardson number is 1.8 and the slope is
sub-critical with γ = 0.34.

Simulations done with horizontal resolutions of 1x/H = 0.02 and 0.01 and time
steps of N1t = 0.069 and 0.0345 showed that 1x/H = 0.02 and N1t = 0.069 were
generally adequate. For the strongest current we use N1t= 0.0345. A uniform vertical
grid spacing with 250 grid cells was used, 400 grid cells giving similar results. This
gives a vertical resolution of 1z/H = 0.004 in the deep water.

Figure 9 compares terms in the energy balance equation (3.17) for a Lagrangian
region spanning the ridge. The dominant balance is between dĒ/dt and W|ξr

ξl

(figure 9a). A major contribution to the energy Ē is associated with the time
varying barotropic currents over the ridge. In conjunction there are large oscillating
pressure gradients accelerating the barotropic currents. These form the dominant
balance in the energetics over the ridge. Panel (b) shows that dĒ/dt − W|ξr

ξl
is

largely balanced by KEf |
ξr
ξl

. Panel (c) shows that dĒ/dt − W|ξr
ξl
− KEf |

ξr
ξl

and the
conversion term G are virtually identical. Panel (d) shows the sum of all the terms
dĒ/dt−W|ξr

ξl
−KEf |

ξr
ξl
−APEf |

ξr
ξl
−G which should theoretically be equal to zero. Peak

values are approximately 0.016 compared with peak values of approximately 60 for
dĒ/dt so the energy budget is satisfied to within approximately 0.025 %.

The energy balance in a Lagrangian domain to the right of the ridge was also
analysed using flux lines with mean positions of 5.4 and 9.4 (not shown). The length
of this region is 25 % of the wavelength of a rightward mode-one tidal frequency wave.
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FIGURE 9. Energy balance in a Lagrangian domain spanning the ridge. Values
non-dimensionalized by the flux scale F0. Time in tidal periods. The domain lies between
flux lines with mean positions at x/H=±5.4 for a case with Us/(NH)= 0.1, h0/H= 0.1
and a/H = 1.8. Resolution is dx/H = 0.02 in the horizontal with J = 250. Time step
N1t = 0.069. (a) dĒ/dt (solid), W|ξl

ξr
(dash-dot), KEf |

ξl
ξr

(dash), conversion term G (dots).
(b) dĒ/dt − W|ξl

ξr
(solid), KEf |

ξl
ξr

(dots), G (dashed), APEf |
ξl
ξr

(dash-dots). The latter is
indistinguishable from zero. (c) dĒ/dt −W|ξl

ξr
− KEf |

ξl
ξr

(solid black), G (dashed), APEf |
ξl
ξr

(dots). The first two curves are barely distinguishable. (d) Net balance dĒ/dt−W|ξl
ξr
−G−

KEf |
ξl
ξr
− APEf |

ξl
ξr

.

Off the ridge the conversion term is zero and the energy fluctuations are not affected
by flow constriction over the ridge. The dominant balance is between dĒ/dt, W|ξl

ξr
and

KEf |
ξl
ξr

, with the latter two approximately half the size of dĒ/dt. Peak values of the
net balance dĒ/dt − W|ξl

ξr
− KEf |

ξl
ξr
− APEf |

ξl
ξr

are approximately 0.01, approximately
0.03 % of the peak values of dĒ/dt so the energy budget in this off-ridge domain is
also satisfied to high accuracy.

Figure 10 compares tidally averaged values in the off-ridge Lagrangian domain.
Panel (a) shows the work terms and kinetic energy fluxes at the left and right
boundaries. All undergo oscillations with a period of about 4T as well as longer
period fluctuations. The net energy balance, 〈dĒ/dt〉 − 〈W〉|ξl

ξr
− 〈KEf 〉|

ξl
ξr
− 〈APEf 〉|

ξl
ξr

,
has a typical value of about 0.01 (panel c) and does not undergo significant
oscillations. This is approximately 0.5 % of a typical value for 〈W〉|ξl .
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FIGURE 10. Energy balance in a Lagrangian domain off the ridge: tidal averages scaled
by F0. The domain lies between flux lines with mean positions at x/H = 5.4 and 9.4
for the same case as in figure 9. (a) 〈W|ξl〉 (solid), 〈W|ξr〉 (dashed), 〈KEf |ξl〉 (dots) and
〈KEf |ξr〉 (dash-dot). (b) 〈dĒ/dt〉 (solid black), 〈W|ξl

ξr
〉 (dashed), 〈KEf |

ξl
ξr
〉 (dots), 〈APEf |

ξl
ξr
〉

(dash-dot). (c) Net energy flux: 〈dĒ/dt〉 − 〈W|ξl
ξr
〉 − 〈KEf |

ξl
ξr
〉 − 〈APEf |

ξl
ξr
〉 (solid); 〈dĒ/dt〉 −

〈W|ξl
ξr
〉 − 〈KEf |

ξl
ξr
〉 (dots), 〈APEf |

ξl
ξr
〉 (dash-dot).

6. Results
Total energy fluxes averaged over one tidal period have temporal fluctuations

with amplitudes of up to 10 % of their mean values. Averaging over four periods
significantly reduced these variations so henceforth we use four period averages,
i.e. we now define the averaging operator as

〈·〉(t)=
1

4T

∫ t

t−4T
· dt. (6.1)

Most simulations were limited to twenty periods and we will generally report results
at this time. Some sets were run for forty tidal periods.

Figure 11 shows the total energy flux 〈Ef 〉 and the contributions from 〈W〉, 〈KEf 〉

and 〈APEf 〉, as a function of distance from the ridge for the cases from set 4 with
a/H= 1.8 (a,b) and a/H= 6 (c,d). The former is the case depicted in figure 2. Values
at t = 20T (symbols) and 40T (grey curves) are shown. Note the much larger range
of flux values used for the left side of the narrow ridge (panel a).

To the left of the narrower ridge the work term 〈W〉 and kinetic energy flux 〈KEf 〉,
which have opposite signs, undergo large spatial fluctuations with a period x/H≈ 11.3
(figure 11a). Peak values of the magnitudes of 〈KEf 〉 and 〈W〉 occur at the locations
where the beams reflect off the surface (see figures 1a and 2). The fluctuation period
is close to 2π/H(k2 − k1) = 11.5, the wavelength associated with the interaction of
mode-one and mode-two waves (the mode-one wavelength is 12.5). The locations of
the minimum and maximum values are independent of time (not shown) with values

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.800


IW generation with background current 213

−60 −50 −40 −30 −20 −10 0
−1.2

−0.8

−0.4

0

0.4

0.8

Fl
ux

Fl
ux

10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

−70 −60 −50 −40 −30 −20 −10 0
−0.15

−0.10

−0.05

0

0.05

0.10

0 10 20 30 40 50 60 70
−0.05

0

0.05

0.10

0.15

0.20

1.8, left side

6, left side

1.8, right side

6, right side

(a)

(c)

(b)

(d)

FIGURE 11. Tidally averaged energy fluxes at t= 20T and 40T (averaged over previous
four periods) scaled by F0 as a function of distance for the cases from set 4 with a/H=
1.8 (a,b) and a/H = 6 (c,d). (a,c) Fluxes to left of ridge. (b,d) Fluxes to right of ridge.
Note the much larger range of flux values in panel (a). Shown in each panel are the work
term 〈W〉 (red), the total kinetic energy flux 〈KEf 〉 (green), the available potential energy
flux 〈APEf 〉 (blue) and the total energy flux 〈Ef 〉 (black). For comparison the grey curves
show the fluxes at t= 40T .

undergoing relatively small temporal oscillations. To the left of the ridge the kinetic
energy flux is positive, i.e. it is in the direction opposite to that of wave propagation.
The total mean energy flux 〈Ef 〉 is almost constant within a distance x/H of 40 from
the ridge where the variations in 〈W〉 are almost completely balanced by variations
in 〈KEf 〉. At larger distances from the ridge 〈Ef 〉 has small spatial variations which
grow with distance from the ridge. This appears to occur because the mean wave field
beyond x/H=−30 is still in a transient state as indicated by the averaged energy flux
after 40 tidal periods (grey curve). At t= 20T linear theory predicts that the first 10
modes have reached x/H =−30 while only the first 5 have reached x/H =−50.

The fluxes to the right of the narrow ridge (figure 11b) undergo significantly smaller
spatial variations on much longer length scales. Variations in 〈W〉 are significant and
are again largely balanced by variations in 〈KEf 〉. Their pattern is very different to
that on the left side of the ridge. 〈KEf 〉 is again in the direction of wave propagation.
For both the leftward and rightward propagating waves it is in the direction of the
background current as the dominant contribution is from the Ūu2 term (see below).
The total energy flux at t= 20T is almost constant out to x/H= 54 due to the larger
downstream group velocities (note different scales used for fluxes to the left and right
of the ridge: the oscillations far to the left of the ridge are much larger than those far
to the right of the ridge). The different patterns in 〈W〉 and 〈KEf 〉 to the left and
right of the ridge is connected to the different patterns in the mean wave field (see
figure 2).

Figure 12 shows a breakdown of 〈W〉 and 〈KEf 〉 into their linear and quadratic
parts (see (3.23) and (3.24)) for the narrower ridge (a/H= 1.8). The fluxes predicted
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FIGURE 12. Comparison of theory and simulation results for a/H= 1.8 from set 4 (same
case depicted in figure 11a,b). Shown are tidally averaged contributions to the energy
fluxes at t= 40T scaled by F0 as a function of distance. Panels (a,c,e) show values to the
left of the ridge. Panels (b,d, f ) show values to the right of the ridge. (a,b) Contributions
to the work term: 〈W1〉 (blue diamonds) and 〈W2〉 (red squares). The dashed black line
shows 〈W〉lin, the theoretical work term from first-order theory. (c,d) 〈KEf 1〉 (green), 〈KEf 2〉

(red) and 〈APEf 〉 (blue). The dashed and dotted lines show the theoretical kinetic energy
flux 〈KEf 〉lin and available potential energy flux 〈APEf 〉lin. (e, f ) The total energy flux 〈Ef 〉

from simulations (blue), contributions to the total energy flux that are second-order in
the perturbation fields, 〈W2 + KEf 2 + APEf 〉 (red) and the total theoretical energy flux
〈W +KEf + APEf 〉lin (black, dashed).

by first-order linear theory are also shown and they compare well with the second-
order contributions. In particular, the linear first-order cross-terms, i.e. W l

ij, KEl
fij and

APEl
fij with i 6= j, account for the spatial variations in the fluxes in the numerical

simulations. The fluxes that are linear in the perturbation fields, 〈W1〉 and 〈KEf 1〉,
make important contributions to the total flux, i.e. the second-order mean wave fields
are important. Panels (e, f ) show the total energy flux, the total second-order flux
〈W2 + KEf 2 + APEf 〉, and the total energy flux from linear theory. The latter two
are very similar. The second-order mean fields contribute almost 25 % of the total
energy flux via the terms 〈W1〉 and 〈KEf 1〉 on the left side of the ridge. For 〈KEf 1〉

to be comparable to 〈KEf 2〉 we need 〈u(1)〉/NH to be comparable to 〈(u(0))2〉/Ūs/NH.
Using

√
〈(u(0))2〉/NH ≈ 0.004 from figure 1, this gives 〈u(1)〉/NH ≈ 1.6× 10−5 which

is an order of magnitude less than the mean currents in the simulation, but given
that the largest wave-induced mean currents are at the base of the shear layer where
Ū is smaller than Us and downstream the mean currents alternate in sign, there is
reasonable consistency.

Figure 11(c,d) shows the fluxes for the widest ridge (a/H = 6) from set 4. To the
left of the ridge (panel c) the fluxes are approximately an order of magnitude smaller
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FIGURE 13. Same as figure 12 but for a wider ridge with a/H = 6.

than those for the narrower ridge. 〈W〉 and 〈KEf 〉 undergo oscillations which are large
compared with their mean values. The fluxes at t= 40T vary much less than those at
t = 20T , in contrast to the narrower ridge, indicating that the flow takes longer to
reach a steady state. The total flux near the ridge (x/H =−18) is approximately the
same at t= 20T and at t= 40T . To the right of the ridge the fluxes are much more
uniform and do not change significantly between 20T and 40T .

Figure 13 compares the first- and second-order contributions to the fluxes with the
linear fluxes for the wide ridge. The spatial patterns in the fluxes are very different
from the narrower ridge with much smaller spatial variations because energy is
primarily in the first mode and the mean fields are much weaker (not shown). The
differences between the second-order and theoretical fluxes (total and work term) is
more significant for the wider ridge and is approximately halved for a smaller ridge
with h0/H = 0.05 (not shown).

Figure 14 shows the total energy flux 〈Ef 〉 as a function of the ridge width for set 4.
Fluxes in the absence of a background current are also shown. For narrow ridges the
magnitudes of the upstream and downstream energy fluxes are increased and decreased
by the current. For very wide ridges the opposite is the case though the effect of
the current is much weaker. Fluxes to the left of the ridge increase in magnitude
monotonically as the ridge gets narrower while the rightward fluxes have a maximum
at a/H ≈ 2.7. The ratio of the magnitudes of the rightward and leftward fluxes, R
decreases monotonically from 4 for the widest ridge to 0.5 for the narrowest ridge.

Also shown in figure 14 are the energy fluxes predicted by first-order linear theory
in which only the fluxes for individual modes have been used. That is, only the
spatially uniform contribution

El
f =

nmax∑
i=1

W l
ii +K l

fii + APEl
fii (6.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.800


216 K. G. Lamb and M. Dunphy

−0.8
−0.6
−0.4
−0.2

0

Fl
ux Simulations

First-order theory

Left side

0

0.2
0.4
0.6
0.8

Fl
ux

Right side

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

−2
−1

0
1
2
3

(a)

(b)

(c)

FIGURE 14. Tidally averaged energy fluxes at t = 20T scaled by F0 as a function of
the ridge width a/H for set 4. Fluxes are calculated at: (a) ξ =−3a/H for the leftward
propagating waves; (b) ξ = 3a/H for the rightward propagating waves. Values from the
numerical simulations (red asterisks) and first-order linear theory (El

f , blue diamonds),
excluding the spatially variable cross-terms, are shown. Also shown in (a,b) are the fluxes
in the absence of a background current: simulation (black asterisks) and theory (grey
curve). (c) Absolute value of the ratio of rightward to leftward fluxes (log base 2) from
the numerical simulations from set 4 (green squares) and no background current (black
asterisks).

is included. This truncated linear approximation predicts the energy flux for wide
ridges (a/H >≈ 4) where only the lowest mode makes a significant contribution.

Figure 15 compares the total fluxes from the different sets of numerical simulations.
Fluxes from sets 1–4 are shown in panels (a,d,g). Sets 1–3 differ only in the amplitude
of the ridge and the results show that the fluxes scale closely with the amplitude
squared. R increases with h0 for the wide ridges (panel g). The results from sets 2 and
4, which differ only in the thickness of the shear layer, are nearly indistinguishable.

Figure 15(b,e,h) compare sets 4, 6 and 7 which differ primarily in the strength of
the current. As expected, increasing the strength of the current increases the difference
in the upstream and downstream fluxes. For narrow ridges the upstream fluxes are
particularly sensitive to Us, increasing rapidly as Us is increased; a/H ≈ 3.6 is the
transition point below which the upstream flux exceeds the downstream flux.

Panels (c, f,i) compare the effects of increasing the depth of the current for two
current strengths (sets 2, 5, 7 and 8). For the deeper currents (sets 5 and 8) the
leftward fluxes are increased in magnitude for the narrow ridges and slightly reduced
for the wider ridges. Because values are so small for the wide ridge this small
reduction is large as a percentage: approximately 40 % for a/H = 6 versus a 7 %
increase for a/H = 1.2. The downstream fluxes are reduced when the depth of the
current is increased for ridges narrower than a/H ≈ 3, increased for somewhat wider
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ridges and unaffected when a/H = 6. As a consequence there is a large increase in
R for wide ridges (panel i).

While the current introduces asymmetry in the upstream and downstream energy
fluxes it does not significantly affect the total energy flux radiating away from the
ridge (figure 16). This is not too surprising as the source of the internal waves at the
bottom is well below the current. Indeed, the generation term is not sensitive to the
presence of the currents. It is the projection of the perturbation onto the upstream and
downstream propagating internal wave modes that is.

7. Summary

The effects of a surface trapped steady background current on internal wave
generation by idealized inviscid tide–topography interactions has been investigated via
two-dimensional nonlinear simulations. The uni-directional current Ū(z) has a simple
structure having its maximum positive value at the surface, being almost vertically
uniform in a surface layer before decaying monotonically to zero in a relatively
thin shear layer. The minimum Richardson number of the background current is
always well above 0.25. We also restrict attention to an idealized linear stratification
for which there is a simple exact analytic expression for the available potential
energy. Rotational effects are not included so that the problem is two-dimensional.
Symmetric Gaussian ridges for a large range of widths were used. Most cases used
a ridge amplitude equal to 10 % of the water depth H the largest ridge being 0.2H.
All except for the tallest, narrowest ridge had subcritical slopes.

The background current results in asymmetries in the upstream (leftward) and
downstream (rightward) wave fields and energy fluxes. The results did not show
strong sensitivity to the shear layer thickness; however, we only considered two
similar values, ds/H= 0.06 and 0.08, to ensure the current was negligible at the crest
of the ridge. Strengthening or deepening the current increased the asymmetries.

R, the ratio of the magnitude of the downstream and upstream energy fluxes, varied
over a wide range of values. For each current this ratio increased monotonically as the
ridge width increased, being considerably less than 1 for the narrowest ridge (a/H =
1.2) and much larger than 1 for the widest ridge (a/H = 6), the transition point with
R= 1 being approximately 3.5. For the widest ridge using a current of depth zs/H =
−0.3, the ratio increased from approximately 2 to 8 as the strength of the currents
increased from Us/NH= 0.04 to 0.16 while for the narrowest ridge R decreased from
0.8 to 0.25. Deepening the current increased these changes: for the strongest, deepest
current (set 8) R= 0.2 for the narrowest ridge and 18 for the widest ridge.

In addition to introducing asymmetries in the energy fluxes in the upstream and
downstream directions, the current has a significant effect on relative contributions
of the various parts of the total flux. First, there is a leading-order contribution
from the kinetic and available potential energy fluxes. The contribution from the
available potential energy flux is small while that from the kinetic energy flux is
significant. Furthermore, splitting the kinetic energy flux into contributions that are
linear and quadratic in the velocity perturbation fields (from integrals of Ū2u′ and Ūu′2
respectively where u′ is the horizontal velocity perturbation) shows that the former is
also significant for Us/NH = 0.1. This can only come from mean second-order fields.
Similarly, splitting the mean work term into contributions that are linear and quadratic
in the perturbation fields, i.e. from integrals of Ūpd and u′pd where pd is the pressure
perturbation, shows that the term linear in the pressure perturbation also makes a
significant contribution. For the case with a/H = 1.2 and Us/NH = 0.1 shown in
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FIGURE 15. Tidally averaged energy fluxes at t= 20T scaled by F0 as a function of the
ridge width a/H for eight sets of simulations. (a,d,g) Sets 1–4 (legend in panel a). In
sets 1–3 the ridge amplitude is varied. Sets 2 and 4 have different shear layer thicknesses.
(b,e,h) Sets 4, 6, 7 (legend in panel b) vary primarily in the strength of the current
(Us/(NH) = 0.1, 0.04 and 0.16 respectively). (c, f,i) Sets 2, 5, 7 and 8 (legend in panel
c). Sets 2, 5 differ only in depth of the current as do sets 7 and 8. These two pairs of
sets differ in the strength of the current. The first two rows show fluxes to the left and
right of the ridge (at ξ = 3a/H and −3a/H). The third row shows the absolute value of
the ratio of the rightward to leftward fluxes (log base 2).

figure 12 the contribution from the terms linear in the perturbations is approximately
25 % of the total leftward energy flux.

The tidally averaged mean fields show strong asymmetries about narrow ridges
(figure 2) and are responsible for the tidally averaged work and kinetic energy flux
terms undergoing significant quasi-periodic oscillations as a function of distance from
the ridge. We leave further exploration of the mean currents to future work but note
that the generation of mean currents when an internal wave beam impinges on a
pycnocline has been observed in the laboratory (Mercier et al. 2012).

A linear theory, valid for small amplitude ridges and small tidal excursions, was
developed to predict the leading-order perturbation fields. The fluxes based on the
first-order solution (which does not include fluxes associated with second-order mean
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FIGURE 16. Total tidally averaged energy fluxes 〈Ef 〉|
ξr
ξl

radiating away from the ridge as
a function of the ridge width. Values are at t= 20T and are scaled by F0. ξr = 3a/H and
ξl =−3a/H.

fields which are formally just as important) predicts spatially varying work and kinetic
energy flux terms that agree well with the second-order fluxes from the nonlinear
simulations for narrow ridges (see figure 12). These spatial variations arise because in
the presence of a background current the linear eigenmodes are not orthogonal. Both
the amplitude of the spatial oscillations and their wavelength seen in the nonlinear
simulations is well predicted by the first-order linear theory. For the case illustrated in
figure 12 the wavelength of the oscillations is equal to the distance between locations
where beams reflect off the surface and is close to the wavelength associated with
interactions of the mode-one and mode-two waves. For a much wider ridge (a/H =
6, figure 13) the agreement between first-order linear theory and the second-order
perturbation fluxes is not as good but improves as the ridge amplitude decreases. This
may be because as the ridge width increases waves above the ridge propagate for
longer distances in slightly shallower water, an effect not taken into account by linear
theory.

We have considered an idealized situation in a nearly linear regime. For more
realistic stratifications with a strong subsurface pycnocline wave propagation speeds
would be larger. For the same currents used here this would result in smaller Froude
numbers presumably reducing the strength of the asymmetry in the upstream and
downstream fluxes. This will be explored in future work. Other complicating factors
include three-dimensional time varying background currents, multiple tidal constituents
leading to spring-neap tidal cycles, three-dimensional bathymetry and horizontally
varying stratifications. In addition rotational effects should be considered. It would be
extremely difficult to separate any observed mean fields into a background state and
wave-induced mean fields unless the wave-induced mean fields were much stronger
than in our simulations as may potentially occur in shallower water with stronger tidal
currents than those used here. Nevertheless the findings reported here suggest that
in the presence of strong currents internal wave energy fluxes emanating away from
a quasi-two-dimensional ridge can be strongly asymmetric with the direction of the
largest energy fluxes being sensitive to the ridge width. The results also suggest that
estimating the traditional work term

∫
u′p′ dz may not be sufficient: it may undergo

significant spatial variations and contributions from the kinetic energy fluxes need to
be considered. It should be possible to measure the latter and see if it is a significant
fraction of the work term 〈W〉 which is traditionally measured.

There are many possible avenues for future study. These include situations in
which the bathymetry penetrates into the current as well as the effects of background
currents on internal solitary wave generation when the stratification is non-constant,
supercritical topography and three-dimensional effects. A full second-order theory
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which includes fluxes associated with second-order mean fields is desirable as is one
not restricted to small amplitude topography. A possible avenue for the latter, which is
restricted to small excursion distances, is a Green’s function approach similar to that
developed for tide–topography interactions in the absence of a background current
(Mathur, Carter & Peacock 2016). The theory could also be extended to include a
free surface.

In conclusion, the presence of a uni-directional surface trapped background current
introduces asymmetries in the internal wave field and in the energy fluxes radiating
upstream and downstream while the total energy flux away from the ridge is not
significantly affected. This would likely not be the case if the ridge penetrated into
the current. For narrow ridges the upstream fluxes can be 4–5 times larger than the
downstream fluxes while for sufficiently wide ridges the downstream fluxes may be 8
or more times larger than the upstream fluxes. In addition the kinetic energy flux can
be significant as can contributions from second-order mean fields.
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