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Abstract

A shift automorphism algebra is one satisfying the conditions of the shift automorphism theorem, and a
shift automorphism variety is a variety generated by a shift automorphism algebra. In this paper, we show
that every shift automorphism variety contains a countably infinite subdirectly irreducible algebra.
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We conceive of an algebra A as an ordered system 〈A, Fi 〉i∈I where A is a
nonempty set and each Fi is an operation on A of finite rank for all i ∈ I . From A,
we can build HSP(A), the class containing all homomorphic images of subalgebras
of direct powers of A. If 6 is the set of all equations true in A, let V be the class of
all algebraic structures satisfying all the equations in 6. According to a famous result
of Garrett Birkhoff, HSP(A)= V . In this case, we call V the variety generated by A.
If there is a finite list of equations true in an algebra from which all equations true in
the algebra can be deduced, we say the algebra is finitely based. If no such finite list
exists, we say the algebra is nonfinitely based.

A subdirect representation of A is a system 〈hi : i ∈ I 〉 of homomorphisms with
domain A so that the system of homomorphisms separates points: that is, provided for
all a, b ∈ A with a 6= b, there is an i ∈ I so that

hi (a) 6= hi (b).

The images hi (A) are called the subdirect factors of the subdirect representation.
A subdirect representation is called trivial if one of the homomorphisms is one-to-
one. An algebra A is subdirectly irreducible provided every subdirect representation
of A is trivial. The subdirectly irreducible algebras are exactly those which have a
critical pair: a pair (a, b) of distinct elements such that any homomorphism that is not
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one-to-one must assign a and b the same value. According to another famous result of
Birkhoff, every algebra A has a subdirect representation in which the subdirect factor
algebras of the representation are subdirectly irreducible. As a consequence, every
variety is determined by its subdirectly irreducible members.

According to a result of Robert Quackenbush, if a variety generated by a finite
algebra has an infinite subdirectly irreducible member, it must also have arbitrarily
large finite ones [17]. In 1981, Dziobiak improved this result by showing that the
same holds in any locally finite variety [6]. A problem of Quackenbush asks whether
there exists a finite algebra such that the variety it generates contains infinitely many
subdirectly irreducible members but no infinite ones. One of the things McKenzie did
in [11]was to provide an example of a four-element algebra of countable signature that
generates a variety with this property. Whether or not this is possible with an algebra
with only finitely many basic operations is not yet known.

Starting with a finite algebra A, there is no guarantee that the variety generated by
A is finitely based. Likewise, the variety generated by A is not guaranteed to have a
finite upper bound on the size of its subdirectly irreducible members. In 1976, both
Robert Park and Bjarni Jónnson proposed the following problem relating these three
finiteness conditions.

The Park–Jónsson problem. Let A be a finite algebra with finitely many
basic operations. If there exists a finite bound on the size of all the subdirectly
irreducible members of the variety generated by A, must A be finitely based?

Jónsson offered the above as an open problem at a seminar at Oberwolfach. Around
the same time, Park proved in his PhD dissertation that the contrapositive held for all
the then known examples of nonfinitely based finite algebras [15]. This paper extends
Park’s result to a particular infinite class of finite algebras known to be nonfinitely
based.

An algebra is locally finite provided each of its finitely generated subalgebras is
finite, and a variety V is locally finite if each of its algebras is locally finite. An
element 0 ∈ A is called an absorbing element provided any operation evaluated at any
tuple containing 0 outputs the value 0. We say that an element of A is proper if it is
not the absorbing element, and we call an n-tuple (a0, . . . , an−1) containing elements
of A proper if each ai is a proper element of A.

As Wald did in her doctoral dissertation [19], we define a shift automorphism
algebra as an infinite, locally finite algebra with only finitely many fundamental
operations, with an absorbing element 0, and with an automorphism σ such that:

(1) the only finite σ -orbit of A is {0};
(2) the proper part of F is partitioned by σ into only finitely many orbits, for each

fundamental operation F of A;
(3) there is a proper element a of A and a nonconstant unary polynomial function f

of A such that f (a)= σ(a).

A shift automorphism variety is any variety generated by a shift automorphism
algebra. This definition is slightly different to Wald’s; she only required that a shift
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automorphism variety be a variety that contains a shift automorphism algebra. Notice
that we have not stipulated that a shift automorphism algebra be uniformly locally
finite. As shown in [4], this follows from the properties that are stipulated. The shift
automorphism theorem (Theorem 1 in [4]) states that any shift automorphism algebra
is inherently nonfinitely based and, under our definition, any shift automorphism
variety is inherently nonfinitely based.

In 1951, Lyndon demonstrated that all two-element algebras are finitely based [8].
Lyndon’s result relied on an analysis of work done by Post [16] in 1941. In 1980,
Berman [5] proved Lyndon’s result using Baker’s finite basis theorem [2] and a
finite basis theorem for certain congruence permutable varieties, proven in 1978, by
McKenzie [10]. In the other direction, many kinds of finite algebras have been shown
to be nonfinitely based. The earliest example, constructed by Lyndon in 1954, is a
seven-element groupoid [9]. Although it is nonfinitely based, it fails to be inherently
nonfinitely based; see [1]. In 1965, Murskiı̆ created a three-element nonfinitely based
groupoid [13] which he later showed to be inherently nonfinitely based [14]. For some
interesting examples of finite algebras proven to be nonfinitely based with help of the
shift automorphism theorem, see [3, 7, 18–20].

Our aim here is to show that if A is a shift automorphism algebra, then A generates
a variety with a subdirectly irreducible algebra that is countably infinite. Hence we
provide an affirmative answer to the Park–Jónsson problem for an infinite subclass of
all algebras known to be nonfinitely based. According to the analysis done by Murskiı̆
in [14], those finite groupoids which generate varieties containing shift automorphism
algebras account for a nontrivial fraction of all nonfinitely based groupoids. Thus if
there are finite algebras that provide negative answers to the Park–Jónsson problem,
they would be less common. Indeed, Willard has offered a 50 euro reward for the first
such example [21].

THEOREM. Let V be a shift automorphism variety. Then V contains a countably
infinite subdirectly irreducible algebra.

PROOF. Let A be a shift automorphism algebra that generates V . In order to construct
a subdirectly irreducible algebra in V , we begin by making a congruence θ of A. The
congruence θ is chosen to be a maximal congruence with respect to separating a and 0,
where a is the element identified in condition (3) above. The quotient algebra A/θ
will be subdirectly irreducible, and provided it is of sufficient size, our construction
will be complete. Thus we aim to show that θ separates countably many pairs of
points. As pointed out in [12], every shift automorphism algebra has a countably
infinite subalgebra that is also a shift automorphism algebra. Thus it is harmless to
assume that A is countably infinite.

The polynomial function f (x) has a property worth mentioning. It has an associated
term function that can be described using a term tree. Let tA(x, y1, . . . , yk−1) be a
term function of A so that

f (x)= tA(x, c1, . . . , ck−1)
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where each ci ∈ A. Let tA(x, c̄) denote this term function. Note that in a shift auto-
morphism algebra A every constant symbol d must denote the absorbing element 0. In
particular, none of these constant symbols can occur in tA(x, ȳ).

Claim 1. The term t (x, ȳ) as mentioned above contains an operation symbol of
rank at least 2.

PROOF. With the aim of reaching a contradiction, we begin by supposing t (x, ȳ)
contains only unary operation symbols. Recall that the σ -orbit of a is infinite and
also that the algebra A is locally finite. Notice that f (a)= σ(a) implies that

f ( f (a)) = f (σ (a))

= σ( f (a))

= σ(σ(a))

= σ 2(a).

Likewise,

f ( f ( f (a))) = f (σ 2(a))

= σ 2( f (a))

= σ 2(σ (a))

= σ 3(a).

Indeed, given that f m(a)= σm(a),

f m+1(a) = f ( f m(a))

= f (σm(a))

= σm( f (a))

= σm(σ (a))

= σm+1(a).

Thus the countably infinite set {σm(a) | m ∈ ω} can be generated by the element a and
applying one-place operations repeatedly. This contradicts the assumption that the
algebra A is locally finite. 2

In order to proceed, we need to make use of some machinery found in the proof
of the shift automorphism theorem. Additional details of this machinery can be found
in [4] and [12]. We say that two elements are operationally related provided they are
entries in a tuple of proper elements that belongs to some fundamental operation of A.
Given a subalgebra S of A, we say that S is σ -decomposable if there is a subalgebra
S0 (called the core of the decomposition) such that

S =
⋃
i∈Z

σ i (S0)
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and no element of S0 is operationally related to any others in any nontrivial σ -
translate of S0. Note that the σ -decomposition is constructed so that elements from
different blocks cannot be operationally related; that is, if F is any basic operation and
s0, . . . , s`−1 ∈ S such that

F(s0, . . . , s`−1) 6= 0,

we are guaranteed that {s0, . . . , s`−1} ⊂ σ
j (S0) for some unique integer j .

Some of the subalgebras of A might turn out to be σ -decomposable while others
might not. We need more control of the decomposable subalgebras. Let n be a
natural number. The methods in [4] and [12, Claim 2] show how to replace the auto-
morphism σ by an automorphism τ and the polynomial function f (x) by another poly-
nomial function g(x) so that τ and g(x) still show that A is a shift automorphism
algebra and each subalgebra of A generated by the union of any n-many τ -orbits is
τ -decomposable.

Indeed, τ turns out to be a power (depending on n) of the automorphism σ . For our
purposes, we pick n to be larger than the ranks of the basic operations of A. In order
to conserve notation, we suppose that each subalgebra of A generated by the union of
any n-many σ -orbits is already σ -decomposable.

We will choose the generating orbits for the σ -decomposable subalgebra in a
particular way, as discussed below. The individual pieces of the σ -decomposition
will be called blocks.

We saw above that the polynomial function f (x) has the associated term function
tA(x, ȳ) with a tuple c̄ consisting of elements from A and where tA(x, c̄)= f (x).
Furthermore, we know that tA(a, c̄)= σ(a). This implies that

a = σ−1(tA(a, c̄))

= tA(σ−1(a), σ−1(c̄))

where σ−1(c̄) denotes σ−1(c1), . . . , σ
−1(ck−1). At some leaf in the evaluation tree

whose output is a, we find the element σ−1(a).
From our argument in Claim 1, we know that by starting at σ−1(a) and following

the evaluation tree upward, after only finitely many applications of unary operations,
we will come to an operation QA of rank at least 2, as seen in Figure 1 (below). Let H
denote this string of unary operation symbols and let HA be the function obtained by
composing the unary operations denoted by the unary operation symbols occurring in
the string H .

Thus on the evaluation tree, under the (at least binary) operation QA we find at least
one node labeled HA(σ−1(a)). Furthermore, since Q is an operation symbol from A,
it has rank smaller than n. Since QA is not unary, it has at least one other input distinct
from HA(σ−1(a)); call these other inputs b1, . . . , br−1 where r ≥ 2 is the rank of Q.

In order to alleviate notation, we will denote QA(HA(σ−1(a)), b1, . . . , br−1) by
QA(HA(σ−1(a)), b̄). The σ -decomposable subalgebra of A that is of interest to us is
the subalgebra generated by the orbits of these leaf elements; namely the orbits of the
elements σ−1(a), b1, . . . , br−1.
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FIGURE 1. The evaluation tree of the polynomial f (x).

Claim 2. Given any natural number k, if σ−k(a) θ 0, then a θ 0.

PROOF. We have seen that a can be written as the output of a term function which
contains the input σ−1(a). In this case, we will say that σ−1(a) is a factor of a or
just that σ−1(a) divides a. In general, an element r divides an element q if there is an
evaluation tree whose output is q and which contains a leaf with the label r . Now,

a = tA(σ−1(a), σ−1(c̄))

⇓

σ−1(a)= tA(σ−2(a), σ−2(c̄))

and so σ−2(a) divides σ−1(a). Combining these, we see that

a = tA(tA(σ−2(a), σ−2(c̄)), σ−1(c̄))

and so σ−2(a) divides a. In general, since

σ−k(a)= tA(σ−(k+1)(a), σ−(k+1)(c̄))

by back-substituting we see that σ−k(a) also divides a.
Now suppose that σ−k(a) θ 0. Since σ−k(a) divides a, it is a node on an evaluation

tree whose output is a. The top node of any evaluation tree with a node that is θ -related
to 0 is itself θ -related to 0. This occurs since 0 is an absorbing element and it is found
inside a tuple of an operation symbol of A. Thus if σ−k(a) is θ -related to 0, it follows
that a θ 0. 2

Our aim is the following: given any natural number m, the element σ−m(a) is
separated by θ from σ−q(a) for any natural number q 6= m. The proof of this proceeds
by contradiction.
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Claim 3. Let m and q be distinct natural numbers. Then

σ−m(a) θ σ−q(a) H⇒ σ−(m−1)(a) θ 0.

PROOF. We begin by supposing that σ−m(a) and σ−q(a) are related by θ . Since σ
is an automorphism, we can apply σ−1 to the evaluation tree above by applying it to
each leaf. This produces an evaluation tree whose output is σ−1(a) and which has the
node

QA(HA(σ−2(a)), σ−1(b̄)).

Repeating this process, the element σ−(m−1)(a) is the output of an evaluation tree
which has the node

QA(HA(σ−m(a)), σ−(m−1)(b̄)).

Since σ−q(a) and σ−m(a) are θ -related, we know that

HA(σ−m(a)) θ HA(σ−q(a))

since H is a composition of unary operation symbols. Consider the following.

HA(σ−m(a)) θ HA(σ−q(a))
σ−(m−1)(b1) θ σ−(m−1)(b1)

...
...

σ−(m−1)(br−1) θ σ−(m−1)(br−1)

QA(HA(σ−m(a)), σ−(m−1)(b̄)) θ QA(HA(σ−q(a)), σ−(m−1)(b̄)).

The right-hand-side term QA(HA(σ−q(a)), σ−(m−1)(b̄)) contains inputs from two
different σ -decomposition blocks, so it must evaluate to the default element 0.
Meanwhile, the left-hand side is a factor of σ−(m−1)(a). Since θ is a congruence,
this implies that σ−(m−1)(a) is θ -related to 0. 2

As a and 0 are not related by θ , we have shown that

(σ−m(a), σ−q(a)) 6∈ θ

for any distinct natural numbers m and q . The quotient algebra A/θ will have
countably infinitely many elements and it is subdirectly irreducible by the maximality
of θ with respect to separating a and 0. Furthermore, it is in V . 2
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