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Field studies were conducted in 2014 and 2015 in Tennessee to examine pyroxasulfone dissipation
under field conditions of winter wheat production. Three formulations were examined: (1) a single
component active ingredient in an 85% dry flowable, (2) dry flowable formulation in combination
of pyroxasulfone + flumioxazin, and (3) a liquid SC formulation of pyroxasulfone + carfentrazone.
The liquid formulation is a suspo-emulsion. When averaged across the three studies, the DT
50 were 34.4, 30.2 and 29.9 d for pyroxasulfone plus carfentrazone, pyroxasulfone, and pyroxasul-
fone plus flumioxazin, respectively. These trends would indicate that formulation had little or no
effect on pyroxasulfone dissipation in this experiment. Pyroxasulfone DT 50 in all studies ranged
from a low of 15.4 d to a high of 53.3 d, and loss was more rapid under warm, moist conditions.
These results indicate that pyroxasulfone would last long enough to provide residual weed control,
but would not persist excessively to injure rotational crops.
Nomenclature: Pyroxasulfone; wheat, Triticum aestivum L.
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Weed control is a major consideration in agro-
nomic crops, including wheat. In the United States,
Italian ryegrass [Lolium perenne L. ssp multiflorum
(Lam.) Husnot] is a major weed problem in winter
wheat (Liu et al. 2016). Controlling Italian ryegrass
is difficult because it has developed resistance to
several classes of herbicides, including acetyl CoA
carboxylase (ACCase) (Ellis et al. 2010) and
acetolactate synthase (ALS) (Chandi et al. 2011).
New control strategies including alternate modes of
action would be beneficial to producers.
Pyroxasulfone is an herbicide with a new mode of

action to help control Italian ryegrass and other
weedy species in wheat (Lawrence and Burke 2014).
Pyroxasulfone is a group 15 herbicide, and its mode
of action involves reducing the biosynthesis of very
long chain fatty acids (Tanetani et al. 2009). Italian
ryegrass control following pyroxasulfone PRE appli-
cation ranged from 65% to 100% in a study in
Oregon (Hulting et al. 2012). The authors reported
that pyroxasulfone applied at the application rates
and timings in the studies had a high level of activity
against Italian ryegrass and excellent winter wheat
safety. Control of rigid ryegrass (Lolium rigidum
Gaudin), a taxonomic relative to Italian ryegrass, was

examined in Australia. Walsh et al. (2011) reported
that pyroxasulfone provided effective control of
ACCase-resistant and susceptible rigid ryegrass
populations when applied PRE. In the rates used in
that study, pyroxasulfone application had little or no
effect on the growth and survival of wheat. Boutsalis
et al. (2014) reported that pyroxasulfone achieved
98% control of rigid ryegrass when applied PRE.
Their research demonstrated that PRE applications
of pyroxasulfone can be safely and effectively used to
control rigid ryegrass in no-till wheat, although
related research showed that carrier volume may
need to be increased to realize the full effectiveness of
this application (Borger et al. 2013).
Pyroxasulfone may also have potential as a post-

harvest treatment to reduce seed bank inputs of Palmer
amaranth (Amaranthus palmeri S. Wats.) after summer
annual crops (Crow et al. 2015). This use may dis-
allow wheat sowing in the same fall if pyroxasulfone
persistence is evident. Pyroxasulfone could also
potentially be used in some areas in a November
application timing to reduce ryegrass growth the fol-
lowing spring, because ryegrass is also problematic in
some summer annual cropping systems (Bond et al.
2014). However, this application timing may result in
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chemical runoff over the wet period in some situations.
Also, cooler temperatures over the winter may reduce
herbicide dissipation.
Limited information is available on the behavior

of pyroxasulfone applied in the cooler fall period.
Pyroxasulfone dissipation expressed as half-life values
varied from 39 to 134 d, and the dissipation was
strongly affected by soil moisture conditions in a
Colorado study (Westra et al. 2014). That research
was in a summer annual crop production system,
indicating soil temperatures were high and soil
moisture contents were low, with reduced water
slowing pyroxasulfone dissipation. Field studies
conducted in Tennessee showed pyroxasulfone
half-life in a summer cropping system to be variable
over a two-year period, with the first year (wet soil
conditions) half-life being 8 d and the second year
(dry soil conditions) half-life being >71 days
(Mueller and Steckel 2011). Soil moisture affected
pyroxasulfone dissipation in the field, with slower
dissipation associated with dry soil conditions.
Pyroxasulfone was developed by the Kumiai-

Ishihara Chemical Company and has the same
active ingredient currently marketed by three differ-
ent companies in the United States. Pyroxasulfone is
marketed as a single component active ingredient in
an 85% dry flowable (Anonymous 2017c), another
dry flowable combination formulation of pyrox-
asulfone plus flumioxazin (Anonymous 2017b),
and a liquid SC formulation of pyroxasulfone plus
carfentrazone (Anonymous 2017a). The liquid
formulation is a suspo-emulsion. The use labels
reflect differences in ideas about potential for wheat
injury from these products, but time before applica-
tion, soil moisture and temperature, and varietal
sensitivity all could influence crop response and weed
control. There are no published comparisons of the
three different formulations and their behavior in soil
in the same field.
The objectives of this study were 1) to determine

the persistence of pyroxasulfone under field condi-
tions in a winter wheat production system, and 2) to
examine the effect of the different formulations on
pyroxasulfone dissipation under Tennessee winter
field conditions.

Materials and Methods

Field studies were established in Knoxville, Ten-
nessee in the falls of 2014 and 2015. The soil was a

Sequatchie loam (fine loamy, silicious, thermic
Humic Hapludult) with an organic matter content
of 1.8% and pH of 6.2. The field sites were tilled
prior to study establishment to bury plant residue
and facilitate later soil sampling. The study in 2014
consisted of an early preplant application applied
21 days before planting (14-EPP), and then a pre-
emergent application on the day of planting
(14-PRE) (Table 1). The 2015 study (15-PRE)
consisted only of a pre-application applied immedi-
ately after wheat planting. Wheat (‘Pioneer 26R22’)
was drilled into 18-cm-wide rows to a depth of
2.5 cm at a density of 70 kg ha−1. Agronomic pro-
duction practices, including fertility and other man-
agement, were typical for the area (Main et al. 2008).
Each individual plot was 3- by 10-m and was
arranged using a randomized complete block design
with four replications. The target dose of pyrox-
asulfone for all treatments was 100 g ai ha−1, which
was applied using a handheld boom equipped with
six flat-fan nozzles delivering 190 L ha−1. Soil sam-
ples were collected from the 0- to 8-cm depth at
approximately weekly intervals after each application
for approximately 60 d, and then another sample was
taken the following spring using methods previously
described (Mueller and Senseman 2015). Two soil
samples (10-cm diam) were collected from each of
the four replicates. The two soil cores from each plot
were composited in a plastic bag at the field site.
Once collected in the field, all samples were imme-
diately stored in freezers (−20C) for later analysis.
Each reported measurement is the mean of four
separate data points.
The pyroxasulfone concentration was determined in

each soil sample as previously described (Mueller and
Steckel 2011). Each soil sample was allowed to thaw
and come to room temperature and was thoroughly
mechanically mixed and homogenized. Then 40 g wet
soil was placed in a 250ml Nalgene low-density poly-
ethylene bottle (all reagents and lab supplies available
from Thermo Fisher Scientific, Atlanta, GA). Metha-
nol (80ml) was added to each bottle and the mixture
was placed on a reciprocating shaker for 2 h. Samples
were removed from the shaker and allowed to statically
equilibrate for 10min, then an aliquot of the extract
was filtered (Fisherbrand 25-mm syringe filters,
0.45μm polytetrafluoroethylene (PTFE), nonsterile,
cat no. 09-730-21) directly into a 2.0ml liquid chro-
matography mass spectrometry (LCMS)-certified vial.
Pyroxasulfone concentrations were determined using
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an external standard technique (analytical pyrox-
asulfone courtesy of Kumiai-Ishihara Chemical Com-
pany, Ikenohata, Japan) with the standard curve of 0.1,
1, 10, and 100mg kg−1. The lower limit of detection in
soil using these procedures was 0.5mg kg−1. Mass
spectrometry parameters were previously described
(Mueller and Steckel 2011).
Environmental data were collected using a perma-

nent weather station located 150m from the field
plots (Watchdog 2000, Spectrum Technologies, Inc.,
Aurora, IL). The unit recorded temperature, rainfall,
relative humidity, wind speed, and wind direction
hourly. Data were collected and entered into an Excel
spreadsheet, which was used to calculate average daily
temperature and weekly rainfall amounts, both refer-
enced to the first herbicide application of that year.
Based on preliminary studies, pyroxasulfone

recovery from the soil was 92%± 4% (data not
shown) and concentrations were corrected for
recovery and for antecedent soil moisture status. The
data were analyzed by location and by herbicide
treatment. Means were calculated for each sampling
event and presented as a mean ± SE in the attached
figures. The first order regression equation

f = a� exp �b�kð Þ
was used to regress the pyroxasulfone concentration
against time (days after treatment [DAT]). The first-
order rate constant, k, indicates the rapidity of the
pyroxasulfone loss from the soil, and values are
shown on Table 1. Each first-order rate constant was
used to calculate a half-life expressed as a DT 50 by
the relationship of 0.693/k=DT 50. In general, the

first order equation fit the observed data well
(r 2 = 0.63 to 0.99, with mean = 0.91). For dis-
cussion purposes, half-lives were compared and aver-
aged over the three formulations and over the three
experiments. For ease of discussion, the term DT 50
is being used as a synonym for half-life, although
some readers view these as distinct and separate ideas.

Results and Discussion

Pyroxasulfone was detected at levels above the
limit of detection of 0.5mg kg−1 soil in all soil
samples. Pyroxasulfone DT 50 values within an
experiment were similar, but were variable in the
different studies (Table 1). Pyroxasulfone DT 50
values in all studies ranged from a low of 15.4 d to a
high of 53.3 d across all studies. Pyroxasulfone dis-
sipation in 14-EPP followed first-order kinetics, and
the average half-life was 25.3 d (Figure 1). Pyrox-
asulfone dissipation in 14-PRE was slower, with all
half-lives greater than 40 d (Figure 2). Pyroxasulfone
dissipation in 15-PRE was more rapid and indicated
a possible formulation affect in this study (Figure 3).
When averaged across the three studies, the DT 50
values were 34.4, 30.2, and 29.9 d for pyroxasulfone
plus carfentrazone, pyroxasulfone, and pyroxasulfone
plus flumioxazin, respectively. These trends would
indicate that formulation had little or no effect on
pyroxasulfone dissipation in this experiment. The
differences among the studies however, indicate that
environmental factors impact pyroxasulfone
dissipation.

Table 1. Descriptors of field studies of pyroxasulfone applied to soil in a wheat field in Knoxville, TN. Study codes
indicate the year that the study was initiated and application timing relative to wheat planting. Full descriptions of
herbicide treatments in text.a

DT 50

Study Date of application Herbicide treatment k, first order ± standard error r 2 d

14-EPP 09/30/2014 Pyroxasulfone + carf 0.020± 0.003 0.96 34.6
Pyroxasulfone 0.031± 0.006 0.92 22.4
Pyroxasulfone + flumi 0.037± 0.011 0.63 18.7

14-PRE 10/22/2014 pyroxasulfone + carf 0.013± 0.002 0.98 53.3
Pyroxasulfone 0.016± 0.002 0.99 43.3
Pyroxasulfone + flumi 0.017± 0.002 0.99 40.8

15-PRE 10/26/2015 pyroxasulfone + carf 0.045± 0.007 0.97 15.4
Pyroxasulfone 0.028± 0.005 0.96 24.8
Pyroxasulfone + flumi 0.023± 0.009 0.86 30.1

All All 0.91 31.5
a Abbreviations: EPP, early preplant; PRE, preplant; carf, carfentrazone; flumi, flumioxazin; DT 50, half-life; d, days.
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Previous research indicated a strong linkage
between environmental conditions and pyrox-
asulfone dissipation (Mueller and Steckel 2011;
Westra et al. 2014). Pyroxasulfone dissipation in our
study was similar in two of three studies (14-EPP
and 15-PRE) and dissimilar in the other study (14-
PRE). This is attributed to warmer temperatures in
the first 21 d of the sampling interval in the 14-EPP
study (mean, 17.6 C; Figure 4) and 15-PRE (mean,
15.2 C; Figure 5) compared to the sampling interval
in the 14-PRE study (6.9 C; Figure 4). Soil tem-
perature would appear to be the main driving force
in the differences between these studies, because soil
moisture was adequate to excessive throughout the
sampling interval in all studies (Figures 4 and 5).
However, another big difference between the
14-EPP and 14-PRE studies was a major rainfall
event between application of the EPP and PRE. This
rainfall event may have moved pyroxasulfone out of

the 0- to 8-cm soil zone, and thus below our
sampling area. There was not a major rainfall event
like this one after the PRE application. So the
difference in 2014 could have been due to differences
in the rainfall pattern as well as differences in
temperature.
With a half-life of approximately 30 d, pyrox-

asulfone would be anticipated to provide residual
control of late-fall-emerging Italian ryegrass and
other weedy plants in the wheat field environment.
Samples taken the following spring indicated mini-
mal pyroxasulfone residues (range of 2.0 to 27.6mg
kg−1, with a mean overall of 8.4mg kg−1), which
would not be expected to cause injury to rotational
crops planted after wheat in the mid-south region
(Figures 1–3). Cropping patterns in other geo-
graphies that have highly sensitive rotational crops,
such as sugar beets, may have potential carry-over
under some scenarios. There was no apparent
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Figure 1. Pyroxasulfone dissipation in a 2014 field study
(14-EPP) in Knoxville, TN, in an early preplant application.
Each data point represents the mean of four measurements ± 1
SE for each commercially available formulation. Abbreviations:
carf, carfentrazone; flumi, flumioxazin; pyrox, pyroxasulfone.
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Figure 2. Pyroxasulfone dissipation in a 2014 field study
(14-PRE) in Knoxville, TN, following PRE application. Each
data point represents the mean of four measurements ± 1 SE for
each commercially available formulation. Abbreviations: carf,
carfentrazone; flumi, flumioxazin; pyrox, pyroxasulfone.
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difference between the three formulations of pyrox-
asulfone examined in the study. As expected, there
was more rapid herbicide loss in warmer and moist
soil environments.
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