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Introduction. Let R be a commutative ring which may not contain a multiplicative
identity. A set of elements alt ...,ak in R will be called an Hx-set (this notation is
explained in section 1) if for each relation r1a1 +... +rkak = 0 (r^R) there exist ele-
ments stjeR such that

rrXx + ... +rkXk = 2
i

where Xlt ...,Xk are indeterminates. Any -R-sequence is an Hx-set, but there do exist
i^-sets which are not .fi-sequences (see section 1). Throughout this note we consider
an .E^-set ax,...,ak which we suppose to be partitioned into two non-empty sets
bl3..., br and clt..., cs. Our main purpose is to show that the ideals B = Rbx +... + Rbr

and C = Rcx +... +Rcs satisfy B™ n Cn = BmCn for all positive integers m and n
(Corollary 1). This generalizes Lemma 2 of Caruth(2) where the result is proved when
ax,..., ak is a permutable ^-sequence. Our proof involves more detail than is necessary
just for this, and we obtain various other properties of Z^-sets. In particular we extend
the main results of CorsiniO) concerning the symmetric and Rees algebras of a power
of the ideal Rax + . . . + Rak (Corollary 3).

1. Examples of Hx-sets. In (5), p. 363, Kabele called elements xlt ...,xk an Hx-
regular sequence if the first homology module of the associated Koszul complex is zero.
I t is clear that an i^-regular sequence is the same as an i^-set (cf. 1-3 of (5)).

That an i?-sequence is an li^-set was shown explicitly by Micali(8), Lemma 2, p. 42.
A very short proof is given in (6), p. 122. The property of an i?-sequence y\,..-,yk

required for this is that, for each i, if ryi+xeRyx + . . . + Ryt then r eRyx + ...+ Ryt.
We now mention some examples of J^-sets which are not .R-sequences. The simplest

way of obtaining such an example is to take a suitable rearrangement of any non-
permutable ^-sequence. However we recall that inside the Jacobson radical of a
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2 C. P. L. RHODES

Noetherian ring R, i?-sequences are permutable and, also, any H^set is an iJ-sequence
(see pp. 90 and 122 of (6)). Examples in (5) show that for neither conclusion may the
Noetherian condition be omitted. We now give an example of a Noetherian ring R
with an H^&et consisting of two zero-divisors x and y. Thus neither x, y nor y, x is an
i?-sequence, although, by Theorem 2 below, the Noetherian condition does imply
that the ideal (x,y) can be generated by an i?-sequence.

EXAMPLE. TakeR = F[X, Y,Z, W]/(ZX,Z{1 - Y), WY, W(l-X))andx = X,y = Y,
where F is afield and ~ denotes the natural image in R.

Clearly x and y are zero-divisors. We require to prove that if/and g are polynomials
in F[X, Y, Z, W], = T say, such that fX + gY = 0R then there exists h eR such that
J=hY and g = -hX. Evidently fX + gYeTZ + TW and, since X, Y, Z, W is an
.Hj-set in T, it is easy to see that there exists k e T such that, modulo TZ + TW,f = kY
and g = — kX. Thus it will be sufficient to consider the case in which/, g e TZ + TW.
Since the pair Z, 0R may be written as ZY, —ZX one sees that we may assume that
/ does not involve Z, and, furthermore, since WX = W and WY = 0R we may even
assume that / = Wfx where /x involves only W. Similarly we may assume g = Zgx

where gx involves Z only. We then have

W^X + ZgxY = aZX + bZ(l-Y) + cWY + dW(l-X),

where a, b, c, deT. Putting Y = Z = 0 and X = 1 we obtain Wfx = 0. Thus/ = 0.
Similarly g = 0, and the required conclusion follows.

2. The basic theorem and corollaries. Let f(X) and g( Y) be polynomial forms over R
(i.e. with coefficients in R) respectively of degrees m in Xlt ...,Xr and nin.Y1,...,Ys,
and denote by /(&) and g(c) the results of the substitutions Xt -> bt and Yi ->• ct. Our
basic theorem shows that when /(&) + g(c) — 0 the coefficients in f(X) + g( Y) satisfy
the natural relations.

THEOREM 1. Iff(b) + g(c) = 0 then f(X)+g(Y) is in the R-module generated by all
forms of the type

v(c)p{X)-ii(b)v{Y), (bjXt-btXJp'iX) or (cft-cj,)!/(Y),

where fi(X) and /i'(X) are monomials in Xlt ...,XTof degrees m and m—1 respectively,
and v( Y) and v'( Y) are monomials inYx, ...,Ysof degrees n and n—\ respectively.

Proof. Use induction on m + n. The result is clear when m = 1 = n, and so, using
symmetry, it will be sufficient to prove the result in the case when f(X) has degree
m ^ 1 and g(Y) has degree n ^ 2. We may write

9{T) = J:K(Y)A{Y), (1)
A

where the summation is over all monomials A of degree n — 1 in Yx,..., Ys and where
each hx is linear. By induction there exist forms Pij(X) of degree m — 1, qti( Y) of degree
n — 2 and elements s/(A such that

j ^ ^ (c,Yt - ctY,) qti{ Y). (2)
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Equating the coefficients of each monomial A( Y) gives linear forms &A( Y) such that

M C ) = - S V A ( 6 ) + *A(6) (3)

and Hh(Y)MY) = 0. (4)

By induction (3) implies the existence of elements t^q'^eR and forms p'^X) of
degree m — 1 such that, for each A,

Equating the terms in Y gives

AA(Y)- S

Ui

ip

and equating the terms in X gives, for each A,

But, by (2),
/(Z) = S sflXHc)fi(X)+

Hence, by (1) and (5),

f(X) + g(Y) = S E «
A

(5)

(6)

(7)

which, by (4) and (6),

= S S
A /e,f

- S

A t,j

+ S (^Ir^I

and this is a polynomial of the required type.

COROLLARY 1. For all positive integers m and, n,

Bm nCn

Proof. An element of Bm n Cn may be written as either f(b) or — g(c) where f(X) and
g(Y) are forms of respective degrees m and n. Then/(6) + g(c) = 0 and so we may ex-
press f(X) + g( Y) as in Theorem 1. Equating terms in X then gives an equation for
f(X) of the form (7) above (with A of degree n) and, hence, f(b) takes the form

S V ^ W M 6 ) which is in _B™O.
/i, A

Corollary 1 implies that, in (2), Theorem 1 and hence also the concluding remark
about the Gorenstein property are true for an H^set generating a proper ideal in any
commutative ring. (In the proof of (2), Theorem 1, replace a\ by ra\ where r is an arbi-
trary element of R, and deduce the contradiction that R £ aJt.)

There is a natural interpretation of our Theorem 1 and its proof when the set
bv ...,br is empty and cx = ax, ...,ck = ak.
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COROLLARY 2. If g( Y) is a form of degree n inYx> ...,Yk such that g(a) = 0 then g( Y)
is in the R-module generated by all forms of the type (a^ — aj^j) v(Y) where v(Y) is a
monomial of degree n—1.

Proof. Simplify the proof of Theorem 1 by replacing each term involving X or fi by
zero.

In the case when aly..., ak is an i?-sequence, Corollary 2 is implicit in (8), Chapitre 1.
I t implies Corollary 3 which was proved for an j?-sequence by Corsini in (3).

Let n be a fixed positive integer and let S be the ring of polynomials over R in the
set Z of all indeterminates ZIH_^n where each fit is a non-negative integer and
/i1 + ... +/ik = n. When f(Z)eS let/(a) denote the result of the substitutions

Denote by q^ (resp. q) the ideal of 8 generated by the set of all forms (resp. linear
forms)/(Z) such that/(a) = 0. To avoid a possible ambiguity when R has no identity
we emphasize that the ideal generated by a set F in the ring 8 means here the set
2 Sy which we shall write as ST.

yer

COROLLARY 3. (i) The ideal q is generated by the set I \ of all forms of the type

where vw = /iwfor w # i orj, vi+l = fit and v3- = /*,- + 1 .
(ii) The ideal q^ is generated by I \ together with the set F2 of all forms of the type

y n y y

"l—'t Pi—Mt "i—"i Pi— Pi'

where vw+fiw = v'w+/i'wfor all w.
Proof. Denote by rjr the homomorphism from 8 to R[XV ..., Xk] determined by the

substitutions Z^ Vk ->• Xji... X£*. Let f(Z) be a form in 8 of degree m such that
/(a) = 0. ByCoro'llary 2,writing f(f{Z)) =/(X),wehave/(X)e 2 ^(a^Zi -afX^

where each K(X) is a monomial in Xlt ...,Xk of degree mn — 1. Clearly there exist
integers K17 ...,Kk with sum n—1 and a monomial £,K(Z) of degree (m — l)n in the Z's
such that, when i 4= j ,

Thus f(f(Z)) = ijr(g(Z)) where g(Z)eSF1. Put k e r f = H. Since 0 is the only linear
form in H, (i) follows.

To prove (ii) it will suffice to show that H = 8V2. A form h(Z) in S of degree m may
be written 2 r

M/l(^) where /i(Z) runs over the distinct monomials of degree m in the

A

where X{X) runs over all the distinct monomials of degree mn in Xlt ...,Xk and
sA, = rA +rAo + ... +rA((A)say, is the sum ofallr^ such that/*(X) = A(-X").Thus

HZ) = S {rxMZ) + r*MZ) + - +rxi

but if h(Z) eH, i.e. h(X) = 0, then sA = 0 for all A and so

HZ) = ?:{r4-
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Therefore, since \jr is homogeneous, H is generated by forms of the type /i(Z)—/i'(Z)
where /i(Z) and ju,'(Z) are monomials, (ii) now follows from (3) section 4 where it may be
seen that ST2 contains every form r(/i(Z) —fi'(Z)) where reB and fi(X) — /i'(X).

As mentioned in (8), (3) and (l), S/q and S/q^, are, respectively, the symmetric and
Rees algebras of the ideal (Ba1 +...+ Bak)

n. I t is easy to deduce from Theorem 1 that
the symmetric algebra of the ideal B"1 + Cn may be represented as the quotient of the
polynomial ring

by the ideal generated by forms of the type

O r CiWv1... Vi... VJ+1... vs ~ Cj "Vl... Vi+1... fj... v,-

Following Davis(4) we call elements xx,..., xk in R strongly analytically independent
provided thatwheneveraform/(X)in.ff[.X1, ...,Xk~\, = 7 say, is such that/(a;) = Othen
f(X) exxT + ... +xkT. Another, immediate, consequence of Corollary 2 is the follow-
ing generalization of Theorem 2-l(i) of (10) and of Theorem 1-6 in (5).

COROLLARY 4. The Hx-set ax,...,ak is strongly analytically independent.
For the rest of this section B is assumed to contain an identity.
We now bring together some known results to show, in particular, that in the

Noetherian case the converse of Corollary 4 holds (cf. (10) 2-2).

THEOREM 2. For a proper ideall = (xlt ...,xk) in a Noetherian ring B, the following are
equivalent:

(1) The set xlt..., xk is strongly analytically independent.
(2) xx, ...,xkis an H^-set.
(3) Any base for I with k elements is an Hx-set.
(4) I is generated by an B-sequence of length k.
(5) The grade of I is k.

Proof. The equivalence of (1), (4) and (5) is contained in (4), Theorem, p. 202. (2)
implies (1) by Corollary 4, and (5) implies (3) by (9), Theorem 6, p. 371.

Theorem 2 breaks down when B is not Noetherian; in particular, (1) does not imply
(2) by (5), Example 1. However, in the case when B is local the following result was
given in (5), 1-5, p. 365. The general case is an open problem.

PROPOSITION. For any B, conditions (2) and (3) of Theorem 2 are equivalent when
I is contained in the Jacobson radical of R.

Proof. Proposition 3 in (7) and the remarks preceding it imply the result in a (more
general) graded situation. (Alternatively, one may use directly a matrix argument
starting from the fact that xlt ...,xk is an H^set if, and only if, (in matrix notation)
Lri\ t^J*= 0 implies [rf] is in the i?-submodule of Bk generated by elements of the form

where yt = 0 if i 4= u or v, yu = xv and yv = -xu.)
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3. A generalization of the basic theorem. Theorem 1 and Corollary 1 may be general-
ized as follows. Suppose the H-^-set alt ...,ak to be partitioned into p non-empty sets
{awl, . .^a,^ } {w = 1, ...,p) and, for each w, let /w be a form of degree mw in indeter-
minatesX^, ...,XWQa. •

v P

THEOREM la. If £ /«,(«) = 0 then 2 fw{X) is ^n the R-module generated by all forms
of the type w=1 w=1

Hv{a)nu(X)-fiJa)nv{X) or (a^X^-a^X^/i'^X),

where fiw and /i'w are monomials in Xwl,..., Xwga of respective degrees mw and mw — 1.

Proof. Use induction on 2 mw. The case m1= ... = mp = 1 is easy, and it is sufficient
•w

to take a case in which mp > 2. Then proceed by analogy with the proof of Theorem 1,

letting fp take the role of g and £ fw the role of/.
U > = 1

Write Rawl+...+EaW9w = Aw for w = 1, ...,p.

COROLLARY la. If 1 ^ i < p then, for all positive integers mx,..., mp, the intersection

of the ideals A?i + ...+Afi and Aft\1 + ...+A»p
is the same as their product.

Proof is analogous to the proof of Corollary 1.
COROLLAKY 16. Let mx,...,mp and nx, ...,np be positive integers, and let T denote the

set of numbers t between 1 and p for which mt ^ nt. Then
(? p ? %= 2

teT stT teT siT

Proof. Observe that S A? £ £ Aft and 2 4f* £ ^ 4f«, and use the modular
law twice. < e T UT S*T stT

Our final result is the following immediate consequence of Theorem 1 a.
COROLLARY 5. For any positive integers mlt...,mp_1, the images of the elements

apl,...,apq in the ring RI(A™i +...+ A™P_I1) constitute an H^set.

Remark. An analogous result for ̂ -sequences follows from (4), Remark, p. 202.
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