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Introduction. Let R be a commutative ring which may not contain a multiplicative
identity. A set of elements a,,...,a; in R will be called an H,-set (this notation is
explained in section 1) if for each relation rya, +... +r,a, = 0 (r;€ R) there exist ele-
ments s;;€ R such that

%7

where X, ..., X, are indeterminates. Any R-sequence is an H,-set, but there do exist
H,-sets which are not R-sequences (see section 1). Throughout this note we consider
an H,-set a,,...,a;, which we suppose to be partitioned into two non-empty sets
by, ..., b, and ¢y, ..., ¢,. Our main purpose is to show that the ideals B = Rb, +- ... + Rb,
and C = Rc,+...+ Re, satisfy Bmn Cr = Bm»C» for all positive integers m and =
(Corollary 1). This generalizes Lemma 2 of Caruth (2) where the result is proved when
a,, ..., a; is a permutable R-sequence. Our proof involves more detail than is necessary
just for this, and we obtain various other properties of H,-sets. In particular we extend
the main results of Corsini(3) concerning the symmetric and Rees algebras of a power
of the ideal Ra, + ... + Ra,, (Corollary 3).

1. Examples of H,-sets. In (5), p. 363, Kabele called elements z,,...,2;, an H;-
regular sequence if the first homology module of the associated Koszul complex is zero.
It is clear that an H,-regular sequence is the same as an H,-set (cf. 1-3 of (5)).

That an R-sequence is an H,-set was shown explicitly by Micali(s), Lemma 2, p. 42.
A very short proof is given in (6), p. 122. The property of an R-sequence vy, ..., ¥,
required for this is that, for each i, if ry,,, € Ry, + ... + Ry, then re Ry, + ... + Ry,.

‘We now mention some examples of H,-sets which are not R-sequences. The simplest
way of obtaining such an example is to take a suitable rearrangement of any non-
permutable R-sequence. However we recall that inside the Jacobson radical of a
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Noetherian ring R, R-sequences are permutable and, also, any H,-set is an R-sequence
{see pp. 90 and 122 of (6)). Examples in (5) show that for neither conclusion may the
Noetherian condition be omitted. We now give an example of a Noetherian ring B
with an H,-set consisting of two zero-divisors x and y. Thus neither z, y nor y, z is an
R-sequence, although, by Theorem 2 below, the Noetherian condition does imply
that the ideal (x, y) can be generated by an R-sequence.

ExamrLE. Toke R = F[X, Y, Z, WI(ZX,Z(1 - Y), WY, W(l—X))andz = X,y = ¥,
where F is a field and — denotes the natural image in R.

Clearly x and y are zero-divisors. We require to prove that if f and g are polynomials
in F[X,Y,Z, W], = T say, such that fX +§Y = 0y then there exists & € R such that
f=nY and g = —hX. Evidently fX +gYeTZ+TW and, since X, ¥, Z, W is an
H,-setin T, it is easy to see that there exists k € T' such that, modulo TZ +TW,f = kY
and ¢ = —kX. Thus it will be sufficient to consider the case in which f,geTZ+TW.
Since the pair Z, 0, may be written as ZY, — ZX one sees that we may assume that
f does not involve Z, and, furthermore, since WX = W and WY = 0, we may even
agssume that f = Wf, where f; involves only W. Similarly we may assume g = Zg,
where ¢, involves Z only. We then have

Wi, X + 29, Y = aZX +bZ(1— Y)+cWY +dW(1 - X),

where @, b, ¢, deT. Putting ¥ = Z = 0 and X = 1 we obtain Wf, = 0. Thus f = 0.
Similarly g = 0, and the required coneclusion follows.

2. The bastc theorem and corollaries. Let f(X) and ¢g(Y) be polynomial forms over B
(i.e. with coefficients in R) respectively of degrees m in X,,..., X, and » in Y},..., Y,
and denote by f(b) and g(c) the results of the substitutions X; - b; and ¥; - ¢;. Our
basic theorem shows that when f(b)+g(c) = 0 the coefficients in f(X)+g(Y) satisfy
the natural relations.

THEOREM 1. If f(b)+g(c) = O then f(X)+g(Y) is in the R-module generated by all
Jorms of the type
ve) (X)) —u®)v(Y), b;X;—b;X)p'(X) or (c;Y;—c,Y;)v' (Y),
where w(X) and p'(X) are monomials in X, ..., X, of degrees m and m — 1 respectively,
and v(Y) and v'(Y) are monomials in Y,, ..., Y, of degrees n and n — 1 respectively.

Proof. Use induction on m +n. The result is clear when m = 1 = %, and so, using
symmetry, it will be sufficient to prove the result in the case when f(X) has degree
m > 1 and g(Y) has degree n > 2. We may write

g(Y)=§7h(Y)/1(Y), (1)

where the summation is over all monomials A of degree n—1 in Y3, ..., Y, and where
each h, is linear. By induction there exist forms p,;(X) of degree m — 1, g,;(Y) of degree
n— 2 and elements s,, such that

f(X)+2A: hA(e) A(Y) = FASM(A(G)/‘(X)—/‘(I’)A(Y))
’ + 2 0;X;—b, X)) p(X)+ X (6;¥;—¢;Y;) qi(Y). (2)
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Equating the coefficients of each monomial A(Y) gives linear forms k,(Y) such that
hy(c) = — Zsapud) +kalc) (3)
and % ky( Y/; A(Y)y=0. (4)

By induction (3) implies the existence of elements ¢,,¢;;€ R and forms p;;(X) of
degree m — 1 such that, for each A,

h(Y)—k\(Y)+ %5,4/\.“()()
= thﬂg(cg/‘(x)—ﬂ(b)yg)'l' > 0; X, =5, X ;) pi(X)+ 2 (¢;Y;—c;Y;) q;5
s i,

i,

Equating the terms in Y gives

kA(Y)— k(YY) = — Eg b)Y+ 30 (e, Y —¢.Y)) 4y ()
Hs Iy

and equating the terms in X gives, for each A,

28 X) = % tugCem(X) + 2 (b; X;—b;X;) pi; (X). (6)
Hy ¥
But, by (2), *

X)) = Z}\S,‘AA(C)IL(X)‘*‘ Z (0;X;—b; X)) p(X). (7)

s 2

Hence, by (1) and (5),
f(X)+9(Y) = % (% st X)) Ale) + IZ]] (0;X;— b, X ;) p;;(X)
+ :Z (kr(Y) — ﬂZﬁ tuei(D) Y+ 121 (¢;¥;— ¢ X;3) gi;) A(Y),
which, by (4) and (8),
=Z ﬂZE tug(ceA(e) p(X) = p(B) Y A(Y ) + 2 X (b; X —b, X ;) pi;(X) Ale)

A 1,5

+ 2 (b:iXi—bin)Pij(X)"‘% E (¢;Y;—¢;Y;) qi; A(Y),
i,

44
and this is a polynomial of the required type.
CorROLLARY 1. For all positive tntegers m and n,
Bmn Cn = B™Cn.

Proof. An element of B™ n C™ may be written as either f(b) or —g(c) where f(X) and
g(Y) are forms of respective degrees m and ». Then f(b) + g(c) = 0 and so we may ex-
press f(X)+¢(Y) as in Theorem 1. Equating terms in X then gives an equation for
J(X) of the form (7) above (with A of degree ») and, hence, f(b) takes the form

X 8aA(e)pu(d) whichisin BmCn.
By A

Corollary 1 implies that, in (2), Theorem 1 and hence also the concluding remark
about the Gorenstein property are true for an H,-set generating a proper ideal in any
commutative ring. (In the proof of (2), Theorem 1, replace at by rat where r is an arbi-
trary element of R, and deduce the contradiction that R < a;,.)

There is a natural interpretation of our Theorem 1 and its proof when the set
by, ..., b, isempty and ¢, = a4, ..., ¢, = ay,.
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CoroLLARY 2. If g(Y) is a form of degree m in Y, ..., Y, such that g(a) = 0 then g(Y)
s in the R-module generated by all forms of the type (a;Y;—a;Y;) v(Y) where v(Y) is a
monomial of degree n— 1.

Proof. Simplify the proof of Theorem 1 by replacing each term involving X or x by
Zero.

In the case when a,, ..., a, is an R-sequence, Corollary 2 is implicit in (8), Chapitre 1.
It implies Corollary 3 which was proved for an R-sequence by Corsini in (3).

Let n be a fixed positive integer and let S be the ring of polynomials over R in the
set Z of all indeterminates Z, ., where each u; is a non-negative integer and
Hy+ ...+, = n. When f(Z) e 8 let f(a) denote the result of the substitutions

Zy .. o> 04 GRE
Denote by qo, (resp. q) the ideal of S generated by the set of all forms (resp. linear
forms) f(Z) such that f(a) = 0. To avoid a possible ambiguity when R has no identity
we emphasize that the ideal generated by a set I' in the ring § means here the set

¥ Sy which we shall write as ST'.
yell

CorOLLARY 3. (i) The ideal q is generated by the set ', of all forms of the type
a’in,... vy @ Z,ul.../q-,
where v, = p,forw £io0rj,v;+1=p and v; = p;+1.
(i) Theideal q,, is generated by T', together with the set Ty of all forms of the type

Z z Z,

vy vy pe T g v;cZ,ui... I
where v,,+ p,, = Vy, + fo, for all w.
Proof. Denote by ¥ the homomorphism from S to R[X, ..., X, ] determined by the
substitutions Z, ., —> XJ1...X}*. Let f(Z) be a form in S of degree m such that
f(a) = 0.By Corollary 2, writing ¥(f(Z)) = f(X), we have f(X) EKEi]jR(a,X,- —a;X;) k(X)

where each x(X) is a monomial in Xj, ..., X, of degree mn— 1. Clearly there exist
integers Ky, ..., K; with sum »— 1 and a monomial £ (Z) of degree (m — 1) in the Z’s
such that, when 7 + j,

(a:iXi - ain) K(X) = w((ajle... Kitlo Koo KE a’inl... Kjees K)'+1..‘Kk) gx(z))
Thus Y (f(Z)) = ¥ (9(Z)) where g(Z)eST',. Put keryr = H. Since 0 is the only linear
form in H, (i) follows.
To prove (ii) it will suffice to show that H = ST,. A form %(Z) in S of degree m may
be written 3 7,4(Z) where u(Z) runs over the distinct monomials of degree m in the

Z’s. Then # h(X) — ZASAA(X)’

where A(X) runs over all the distinct monomials of degree mn in X,,...,X; and
8p» = Ty +Ta,+ .. + 7y, 58Y, is the sum of all , such that u(X) = A(X). Thus

WZ) = by (13, (Z) + 73, A Z) + ... +75,00A0(2)),

but if A(Z)e H, i.e. A(X) == 0, then s, = 0 for all A and so
Z) = % (a(=A(2) + A5(Z)) + ... +72,5)( — A(Z) + An(2)))-
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Therefore, since ¥ is homogeneous, H is generated by forms of the type u(Z)—u’(Z)
where 4(Z) and ' (Z) are monomials. (ii) now follows from (3) section 4 where it may be
seen that ST, contains every form r(u(Z)—u'(Z)) where re R and u(X) = u'(X).

As mentioned in (8), (3) and (1), S/q and S/q,, are, respectively, the symmetric and
Rees algebras of the ideal (Ra, + ... + Ra;)™. It is easy to deduce from Theorem 1 that
the symmetric algebra of the ideal B™+ C* may be represented as the quotient of the
polynomial ring

BUZ,,..plr+ e = mpU W, 1+ 40 = )]
by the ideal generated by forms of the type

v v _ht
... CpZy, b bW,

b, Z -b,Z

v

¥y g gL F¥m it oo pr
or cim,... Viw ¥Vjtlovs T 7] Wil vitle. vje.ve

Following Davis(4) we call elements z,, ..., z, in R strongly analytically independent
provided that whenever a form f(X) in B[ X, ..., X, ], = T say, issuch that f(x) = O then
fX)exz, T+ ... +2,T. Another, immediate, consequence of Corollary 2 is the follow-
ing generalization of Theorem 2-1(i) of (10) and of Theorem 1-6 in (5).

COROLLARY 4. The H,-set a,, ..., a; is strongly analytically independent.

For the rest of this section R is assumed to contain an identity.

We now bring together some known results to show, in particular, that in the
Noetherian case the converse of Corollary 4 holds (cf. (10) 2-2).

THEOREM 2. For a properideal I = (x,, ..., x;) in a Noetherian ring R, the following are
equivalent:

(1) The set x4, ..., x; is strongly analytically independent.

(2) ay, ..., 2y ts an H,-set.

(3) Any base for I with k elements is an H,-set.

(4) I is generated by an R-sequence of length k.

(5) The grade of I is k.

Proof. The equivalence of (1), (4) and (5) is contained in (4), Theorem, p. 202. (2)
implies (1) by Corollary 4, and (5) implies (3) by (9), Theorem 6, p. 371.

Theorem 2 breaks down when R is not Noetherian; in particular, (1) does not imply
(2) by (5), Example 1. However, in the case when R is local the following result was
given in (5), 1-5, p. 365. The general case is an open problem.

ProrosirioN. For any R, conditions (2) and (3) of Theorem 2 are equivalent when
I is contained in the Jacobson radical of R.

Proof. Proposition 3 in (7) and the remarks preceding it imply the result in a (more
general) graded situation. (Alternatively, one may use directly a matrix argument
starting from the fact that x,, ..., x, is an H,-set if, and only if, (in matrix notation)
[r;] [x;]* = 0 implies [r,] is in the R-submodule of R* generated by elements of the form

[y;] wherey, =0if1 +uorv,y, =z, and y, = —2,.)
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3. A generalization of the basic theorem. Theorem 1 and Corollary 1 may be general-
ized as follows. Suppose the H;-set a,, ...,a; to be partitioned into p non-empty sets
{@u1s - > Ayg,} (w = 1,...,p) and, for each w, let f,, be a form of degree m,, in indeter-

minates X, ..., X, -

P
TaEOREM la. If ¥ f,(a) = 0 then §; Ju(X) 18 tn the R-module generated by all forms
1 w=1

of the type b
:u’v(a') qu(X) _:u’u(a) /"v(X) or (awj Xun — Qs Xwg) /’Lw(X) ’
where p,, and p,, are monomsals in X,,, ..., X, of respective degrees m,, and m,,— 1.
Proof. Use induction on ¥ m,,. The case m; = ... = m,, = 1is easy, and it is sufficient

w
to take a case in which m,, > 2. Then proceed by analogy with the proof of Theorem 1,

-1
letting f,, take the role of ¢ andpz f.u the role of f.
w=1

Write Ra,,; + ...+ Ra,, = A4, forw=1,...,p.

CoROLLARY la. If 1 < i < p then, for all positive integers m,, ..., m,, the intersection
of the ideals ATt + AT and AT+ 4+ AT
is the same as their product.

Proof is analogous to the proof of Corollary 1.

CoROLLARY 1b. Let m,, ..., m,, and n,, ..., n, be positive integers, and let T' denote the
set of numbers t between 1 and p for which m; < ny. Then

(APi+ .+ AP )N (AN + .+ Afp) = 3 AP+ T AT+ (X AP) (X AD).
teT s¢T teT s8¢l

Proof. Observe that 3, A< ¥ Afxand 3 AT < ¥ A", and use the modular

g T T
law twice. ter te 8¢ 8¢l

Our final result is the following immediate consequence of Theorem 1a.

CoROLLARY 5. For any positive integers my, ...,m,_,, the images of the elements

Up1; - -+ B, 1 the ring R AT+ ... + Apr3?) constitute an H,-set.

Remark. An analogous result for R-sequences follows from (4), Remark, p. 202.
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