AN INEQUALITY FOR SEQUENCE TRANSFORMATIONS

L. S. Bosanquet

1.1. Let $A = (a_{\mu\nu})$ be a normal triangular matrix, i.e., one for which $a_{\mu\mu} \neq 0 \ (\mu \geqslant 0), \ a_{\mu\nu} = 0 \ (\nu > \mu).$

Inequalities of the following form have entered naturally into analysis:

$$\left| \frac{1}{R_n} \sum_{\nu=0}^m a_{n\nu} s_{\nu} \right| \leqslant K \max_{0 \leqslant \mu \leqslant m} \left| \frac{1}{R_{\mu}} \sum_{\nu=0}^{\mu} a_{\mu\nu} s_{\nu} \right|, \tag{1}$$

where (i) $0 \le m < n$, (ii) $R_{\mu} > 0$ ($\mu \ge 0$), (iii) K is a constant, depending on the matrix A and the sequence $\{R_{\mu}\}$, but independent of m, n and the finite sequence $\{s_{\nu}\}$.

The factor $1/R_{\mu}$ is convenient for classification, but we may omit it, by replacing $a_{\mu\nu}/R_{\mu}$, by $c_{\mu\nu}$, so that the inequality becomes

$$\left|\sum_{\nu=0}^{m} c_{n\nu} s_{\nu}\right| \leqslant K \max_{0 \leqslant \mu \leqslant m} \left|\sum_{\nu=0}^{\mu} c_{\mu\nu} s_{\nu}\right|. \tag{2}$$

The inequalities (1) and (2) only hold for restricted classes of matrices. For example, if $|c_{n\nu}| \to \infty$ as $n \to \infty$, (2) breaks down for large n. Again, if $c_{n\nu} \to 0$, (2) gives no information for large n.

But these cases remain significant if we consider instead inequalities with the constant K replaced by a factor G = G(m, n), independent of $\{s_{\nu}\}$, but depending on m and n. In the present paper I begin by obtaining an inequality of this kind, for an arbitrary normal triangular matrix with complex elements. The factor G is best-possible, in the sense that equality is attained with a suitable $\{s_{\nu}\}$, depending on m and n. In §3 I give necessary and sufficient conditions for equality to be attained with a sequence $\{s_{\nu}\}$ which is independent of m and n.

For an important class of matrices with positive elements, the same inequality has been obtained by Wilansky and Zeller [19], and discussed further by Zeller [22]. An account of earlier results is given in §2, in conjunction with examples. Zeller's later results are discussed in §4.

1.2. If
$$t_{\mu} = \sum_{\nu=0}^{\mu} a_{\mu\nu} s_{\nu} \quad (\mu \geqslant 0), \tag{3}$$

then

$$s_{\nu} = \sum_{\mu=0}^{\nu} b_{\nu\mu} t_{\mu} \quad (\nu \geqslant 0),$$
 (4)

where $B = (b_{\mu\nu})$ is the inverse of the normal triangular matrix $A = (a_{\mu\nu})$. The matrix B is also triangular and normal. From the identities

[MATHEMATIKA 13 (1966), 26-41]

AB = BA = I, we have

$$\sum_{\lambda=\nu}^{\mu} a_{\mu\lambda} b_{\lambda\nu} = \begin{cases} 1 & (\nu=\mu) \\ 0 & (\nu<\mu) \end{cases}$$
 (5)

and

$$\sum_{\lambda=\nu}^{\mu} b_{\mu\lambda} a_{\lambda\nu} = \begin{cases} 1 & (\nu=\mu) \\ 0 & (\nu<\mu). \end{cases}$$
 (6)

We shall make frequent use of (3), (4) and (5).

Theorem 1. If $A=(a_{\mu\nu})$ is a normal triangular matrix, with complex elements, $B=(b_{\mu\nu})$ is its inverse, $R_{\mu}>0$ and $0\leq m< n$, then

$$\left| \frac{1}{R_n} \sum_{\nu=0}^m a_{n\nu} s_{\nu} \right| \leqslant G \max_{0 \leqslant \mu \leqslant m} \left| \frac{1}{R_u} \sum_{\nu=0}^\mu a_{\mu\nu} s_{\nu} \right| \tag{7}$$

for all finite sequences $\{s_{\nu}\}\ (\nu=0,\,1,\,...,\,m)$, where

$$G = G(m, n) = \frac{1}{R_n} \sum_{\mu=0}^{m} |h_{\mu}| R_{\mu}, \tag{8}$$

$$h_{\mu} = h_{\mu}(m, n) = \sum_{\nu=\mu}^{m} a_{n\nu} b_{\nu\mu}.$$
 (9)

If

$$h_{\mu} = e^{-i\rho_{\mu}} |h_{\mu}| \neq 0 \quad (0 \leqslant \mu \leqslant m), \tag{10}$$

where $\rho_{\mu} = \rho_{\mu}(m, n)$, then there is equality in (7) if and only if

$$s_{\nu} = Ck_{\nu} \quad (0 \leqslant \nu \leqslant m) \tag{11}$$

where C is an arbitrary constant, and $k_{\nu} = k_{\nu}(m, n)$ satisfies the equation \dagger

$$\sum_{\nu=0}^{\mu} a_{\mu\nu} k_{\nu} = e^{i\rho\mu} R_{\mu} \quad (0 \leqslant \mu \leqslant m), \tag{12}$$

i.e.

$$k_{\nu} = \sum_{\mu=0}^{\nu} b_{\nu\mu} e^{i\rho\mu} R_{\mu} \quad (0 \leqslant \nu \leqslant m).$$
 (13)

If $h_{\mu}=0$ for some μ (and the corresponding ρ_{μ} is chosen arbitrarily), the conditions (11)–(13) are sufficient for equality.

In all cases, the factor G may be expressed in the form

$$G = \frac{1}{R_n} \left| \sum_{\nu=0}^m a_{n\nu} k_{\nu} \right|. \tag{14}$$

Proof. Let m, n be given integers such that $0 \le m < n$. Write;

$$t_{n,m} = \sum_{\nu=0}^{m} a_{n\nu} s_{\nu} = \sum_{\nu=0}^{m} a_{n\nu} \sum_{\mu=0}^{\nu} b_{\nu\mu} t_{\mu} = \sum_{\mu=0}^{m} t_{\mu} \sum_{\nu=\mu}^{m} a_{n\nu} b_{\nu\mu} = \sum_{\mu=0}^{m} h_{\mu} t_{\mu},$$

[†] If C = 0, k_{ν} is arbitrary.

[‡] Cf. Wilansky and Zeller [19] or Zeller [21; p. 43].

where h_{μ} is given by (9). Then

$$\frac{1}{R_n} |t_{n,m}| \leqslant \frac{1}{R_n} \sum_{\mu=0}^m |h_{\mu} t_{\mu}| \tag{*}$$

$$\begin{split} &= \frac{1}{R_n} \sum_{\mu=0}^{m} |h_{\mu}| \, R_{\mu} . |t_{\mu}| / R_{\mu} \leqslant \frac{M}{R_n} \sum_{\mu=0}^{m} |h_{\mu}| \, R_{\mu} \\ &= GM, \end{split} \tag{**}$$

where

$$M = \max_{0 \le \mu \le m} |t_{\mu}| / R_{\mu} \tag{15}$$

and G = G(m, n) is given by (8).

This establishes the inequality (7).

We next show that G(m, n) is best-possible, in the sense that there is a finite sequence $\{s_{\nu}'\}=\{s_{\nu}'(m, n)\}$, such that

$$\frac{1}{R_n} \left| \sum_{\nu=0}^m a_{n\nu} s_{\nu'}^{\; \prime} \right| = G \max_{0 \le \mu \le m} \left| \frac{1}{R_{\mu}} \sum_{\nu=0}^{\mu} a_{\mu\nu} s_{\nu'}^{\; \prime} \right|. \tag{16}$$

Now equality is attained in (7) if and only if nothing is thrown away at the steps (*) and (**). Thus there is equality in (7) if and only if

(i)
$$h_{\mu}t_{\mu} = e^{i\theta} |h_{\mu}t_{\mu}| \qquad (0 \leqslant \mu \leqslant m),$$

where θ is real and independent of μ ,

(ii)
$$|h_{\mu}t_{\mu}| = M |h_{\mu}| R_{\mu} \quad (0 \leq \mu \leq m),$$

where M is non-negative and independent of μ .

First suppose that $h_{\mu} \neq 0 \ (0 \leqslant \mu \leqslant m)$. Then the conditions become

$$\begin{array}{ll} \text{(i)'} & t_{\mu}\!=\!e^{i\theta}.\,e^{i\rho_{\mu}}\!\left|\,t_{\mu}\right| \\ \text{(ii)'} & \left|\,t_{\mu}\right|\!=\!MR_{\mu} \end{array} \right\} \quad (0\leqslant\mu\leqslant m),$$

for some real θ and some $M \ge 0$, where ρ_{μ} satisfies (10).

Conditions (i)' and (ii)' hold if and only if

for some constant C.

Thus there is equality in (7) if and only if

$$\sum_{\nu=0}^{\mu} a_{\mu\nu} s_{\nu} = C e^{i\rho_{\mu}} R_{\mu} \quad (0 \leqslant \mu \leqslant m).$$
 (18)

Now let k_{ν} be defined as so to satisfy (12)-(13). Then the conditions for equality are satisfied if and only if (11) holds.

Next suppose that $h_{\mu} = 0$ for one or more μ . If $h_{\mu'} = 0$, where $0 \le \mu' \le m$, conditions (i) and (ii) are automatically satisfied for $\mu = \mu'$, and impose no

restriction on $t_{\mu'}$, except that $|t_{\mu'}| \leq MR_{\mu'}$ by (15). Hence the conditions for equality are satisfied, in particular, when s_{ν} satisfies (11).

Finally, if we substitute $s_{\nu}' = k_{\nu}$ into (16) ,we obtain

$$\frac{1}{|R_n|} \left| \sum_{\nu=0}^m a_{n\nu} k_{\nu} \right| = G \max_{0 \le \mu \le m} \left| \frac{1}{|R_\mu|} e^{i\rho\mu} R_\mu \right| = G.$$

Thus G is always expressible in the form (14).

This completes the proof of the theorem.

Remarks. (1) More precisely, there is equality in (7) if and only if

and

In particular, if $h_{\mu} = 0$ for all μ $(0 \le \mu \le m)$, then C is indeterminate, and there is always equality in (7), both sides being zero. In this case $a_{n\nu} = 0$ for $0 \le \nu \le m$.

(2) If
$$h_{\mu'} = 0$$
, and $t_{\mu'} = T$, then the contribution of $t_{\mu'}$ to $s_{\nu} = \sum_{\mu=0}^{\nu} b_{\nu\mu} t_{\mu}$ is $b_{\nu\mu'} T$, if $\nu \geqslant \mu'$, and zero if $\nu < \mu'$. Hence its contribution to $t_{n, m} = \sum_{\nu=0}^{m} a_{n\nu} s_{\nu}$ is $\sum_{\mu} a_{n\nu} b_{\nu\mu'} T = h_{\mu'} T = 0$.

Thus the arbitrary $t_{\mu'}$ contributes nothing to the left-hand side of the inequality. And it contributes nothing to the right-hand side provided $\mid T \mid \leqslant M' \; R_{\mu'}$, where $M' = \max_{0 \leqslant \mu \leqslant m, \; \mu \neq \mu'} |t_{\mu}| / R_{\mu}$.

2.1. The inequality

$$\left|\sum_{\nu=0}^{m} A_{n-\nu}^{\delta-1} s_{\nu}\right| \leqslant \max_{0 \leqslant \mu \leqslant m} \left|\sum_{\nu=0}^{\mu} A_{\mu-\nu}^{\delta-1} s_{\nu}\right|, \tag{20}$$

where $0 < \delta < 1$, $0 \le m < n$ and

$$A_n^{\sigma} = \binom{n+\sigma}{n} \quad (\sigma > -1), \tag{21}$$

was first stated by Jacob [8], and later found independently by myself [2], [3]. The proof in [2] is valid for complex s_{ν} .

Jacob said that the inequality was "already known", and referred to Lemma 7 of Hardy and Riesz [7], which is Riesz's inequality (or mean value theorem) for typical means:

$$\left| \int_0^{\xi} (x-u)^{\delta-1} A(u) du \right| \leq \max_{0 \leq v \leq \xi} \left| \int_0^v (v-u)^{\delta-1} A(u) du \right|, \tag{22}$$

where $0 < \delta < 1$, $0 < \xi < x$ and

$$A(u) = \sum_{\lambda_n < u} a_n$$
 $(\lambda_0 < \lambda_1 < \dots \text{ and } \lambda_n \to \infty).$ (23)

Riesz's inequality is not the same as Jacob's, even when $\lambda_n = n$, but an examination of the proof in [7] shows that (20) may be established by a similar argument, with Abel's lemma playing the role of the second mean value theorem.

2.2. In a more general form of Riesz's inequality, A(u) is replaced by a function $\phi(u) \in L(0, \xi)$ and the maximum by the essential upper bound. The proofs of the inequality [13], [7], [14], [16], show that a factor

$$G = G(\xi, x) = \frac{1}{\Gamma(\delta) \Gamma(1 - \delta)} \int_0^{\xi} (x - u)^{\delta - 1} u^{-\delta} du < 1$$
 (24)

may be inserted on the right-hand side. Moreover, this factor is best-possible. For equality is attained if we put $\phi(u) = Cu^{-\delta}$.

I have obtained some extensions of Riesz's inequality in an earlier investigation not yet presented for publication.

2.3. The general inequality (2) was introduced by Jurkat and Peyerimhoff [10].

Peyerimhoff [12] had shown that, if the normal triangular matrix $C = (c_{\mu\nu})$ defines a regular sequence-to-sequence transformation, then the space C_0 , of sequences $s = \{s_{\nu}\}$ whose transforms $t = \{t_{\mu}\}$ are null sequences, will have the property† that every sequence $s = \{s_{\nu}\}$ in C_0 is the weak limit of the sequence‡

$$s^{(k)} = (s_0, s_1, \dots, s_k, 0, 0, \dots), \tag{25}$$

if and only if

$$\left| \sum_{\nu=0}^{m} c_{n\nu} s_{\nu} \right| \leqslant K \sup_{\mu \geqslant 0} \left| \sum_{\nu=0}^{\mu} c_{\mu\nu} s_{\nu} \right|, \tag{26}$$

whenever $0 \le m < n < \infty$ and $s \in C_0$.

Jurkat and Peyerimhoff showed that (26) holds for all $s \in C_0$ if and only if the inequality (2) holds for all finite sequences $(s_0, s_1, ..., s_m)$ and all m, n such that $0 \le m < n < \infty$. Their argument is valid for any normal triangular matrix and with C_0 replaced by any set G containing all the sequences s whose transforms are terminating sequences

$$t^{(m)} = (t_0, t_1, \dots, t_m, 0, 0, \dots).$$
 (27)

A number of other properties have also been shown to be equivalent to (26), and hence also to (2). For an account of these, see Wilansky [18] and the references there to [4], [11], [17], [19], [20], [21].

[†] Schwache Abschnittskonvergenz (SAK); weak sectional convergence.

 $[\]ddagger$ i.e. $F(s) = \lim F(s^{(k)})$ for every linear functional F(s) defined on C_0 .

2.4. Jurkat and Peyerimhoff [10] found sufficient conditions for the inequality (2) (or (1) with $R_{\mu} = 1$) to hold. Their conditions were

(i)
$$a_{\mu\nu} > 0$$
 $(0 \le \nu \le \mu \le n)$, (ii) $\frac{a_{\mu_2 \nu_1}}{a_{\mu_1 \nu_1}} \ge \frac{a_{\mu_2 \nu_2}}{a_{\mu_1 \nu_2}}$, (iii) $\frac{a_{\mu_2 0}}{a_{\mu_1 0}} \le K$, (28)

for $0 \le \nu_1 \le \nu_2 \le \mu_1 < \mu_2 \le n$.

If condition (iii) is omitted and $a_{\mu\nu}$ is replaced by $c_{\mu\nu} = a_{\mu\nu}/a_{\mu0}$, then $c_{\mu\nu}$ satisfies the same conditions, with K=1, and hence, as their proof shows,

$$\left| \frac{1}{a_{n0}} \sum_{\nu=0}^{m} a_{n\nu} s_{\nu} \right| \leq \max_{0 \leq \mu \leq m} \left| \frac{1}{a_{\mu 0}} \sum_{\nu=0}^{\mu} a_{\mu \nu} s_{\nu} \right|, \tag{29}$$

for $0 \le m \le n$, which is an inequality of the form (1), with $R_{\mu} = a_{\mu 0}$. Their proof, which holds for real s_{ν} , is an extension of that in [3].

2.5. Wilansky and Zeller [19] (see Zeller [21, p. 43]) obtained the inequality (1), with $R_u = 1$, under the conditions

$$a_{\mu\mu} = 1/b_{\mu\mu} > 0 \quad (\mu \geqslant 0), \quad a_{\mu\nu} \geqslant 0 \quad (0 \leqslant \nu < \mu),$$

$$b_{\mu\nu} \leqslant 0 \quad (0 \leqslant \nu < \mu), \quad B_{\nu} = \sum_{\mu=0}^{\nu} b_{\nu\mu} \geqslant 0 \quad (\nu \geqslant 0).$$
(30)

Their proof, which is valid for complex s_{ν} , shows that the constant K=1 may be replaced by the factor

$$G = \sum_{\mu=0}^{m} h_{\mu}, \text{ where } h_{\mu} \geqslant 0, \tag{31}$$

 h_{μ} being given by (9). This implies, since $B_{\nu} \ge 0$, that

$$G = \sum_{\nu=0}^{m} a_{n\nu} B_{\nu} \leqslant \sum_{\nu=0}^{n} a_{n\nu} B_{\nu} = \sum_{\mu=0}^{n} \sum_{\nu=\mu}^{n} a_{n\nu} b_{\nu\mu} = 1,$$
 (32)

and that equality is attained in (7), with $R_{\mu}=1$, when $t_{\mu}=C$, i.e., $s_{\nu}=CB_{\nu}$. They also observed that Jurkat and Peyerimhoff's criterion, with K=1, is included in theirs. This is a generalisation of Kaluza's theorem; cf. Hardy [6; Theorem 22]. Later Zeller [22] remarked that the conditions $b_{\mu\mu}>0$ ($\mu \geq 0$), $b_{\mu\nu} \leq 0$ ($0 \leq \nu < \mu$) themselves imply that $a_{\mu\nu} \geq 0$ ($0 \leq \nu < \mu$), so that the hypothesis on $a_{\mu\nu}$ may be omitted. This is a generalisation of a sort of converse of Kaluza's theorem; cf. Dienes [5],†

These results may be incorporated in the following theorem, which is a corollary of Theorem 1. The hypotheses of Theorem 2 are satisfied, in particular, under conditions (28), with (iii) omitted.

[†] Dr. Vermes showed me that if B is $n \times n$ and triangular, with diagonal matrix D, then $B^{-1} = \sum_{v=0}^{n-1} D^{-v-1} (D-B)^v$, since $(D-B)^n = 0$. See also Tatchell [15]. Professor Peyerimhoff gave me two further references: (1) G. de Rham, Publ. Inst. Math. Belgrade, 4 (1952), 133–134, (2) W. B. Jurkat, Proc. International Congress of Mathematicians Amsterdam, 2 (1954), 126.

THEOREM 2. If $B=(b_{\mu\nu})$ is the inverse of a normal triangular matrix $A=(a_{\mu\nu})$, and if

$$b_{\mu\mu} > 0 \quad (0 \leqslant \mu \leqslant n), \qquad b_{\mu\nu} \leqslant 0 \quad (0 \leqslant \nu < \mu \leqslant n)$$

$$(33)$$

and $R_{\mu} > 0$ $(0 \leqslant \mu \leqslant n)$, then $a_{\mu\nu} \geqslant 0$ $(0 \leqslant \nu \leqslant \mu \leqslant n)$ and, if $0 \leqslant m < n$,

$$h_{\mu} \geqslant 0 \quad (0 \leqslant \mu \leqslant m), \tag{34}$$

where h_{μ} is given by (9). Further the inequality (7) holds, with

$$G = \left| \sum_{\nu=0}^{m} a_{n\nu} k_{\nu} \right| / \sum_{\nu=0}^{n} a_{n\nu} k_{\nu}, \tag{35}$$

where k_{ν} satisfies

$$\sum_{\nu=0}^{\mu} a_{\mu\nu} k_{\nu} = R_{\mu} \quad (0 \le \mu \le n), \tag{36}$$

i.e.,

$$k_{\nu} = \sum_{\mu=0}^{\nu} b_{\nu\mu} R_{\mu} \quad (0 \leqslant \nu \leqslant n).$$
 (37)

Proof. Since conditions (33) imply that $a_{\mu\nu} \ge 0$ $(0 \le \nu \le \mu \le n)$, we have, as in Wilansky and Zeller's theorem,

$$h_{\mu} = \sum_{\nu=\mu}^{m} a_{n\nu} b_{\nu\mu} = -\sum_{\nu=m+1}^{n} a_{n\nu} b_{\nu\mu} \ge 0 \quad (0 \le \mu \le m).$$

Thus

$$h_\mu\!=\!e^{-0i}\,\big|\,h_\mu\big|\quad (0\leqslant \mu\leqslant m),$$

and (13), with $\rho_{\mu} = 0$, becomes (37) for $0 \le \nu \le m$. Hence (35) follows from (14), together with (36) for $\mu = n$.

This proves the theorem.

In particular, we have

Corollary 1. If $k_{\nu} \ge 0$ $(0 \le \nu \le n)$, then $G \le 1$.

If $R_{\mu}=1$, this is Wilansky and Zeller's theorem.

COROLLARY 2. If $k_{\nu} \ge 0$ $(0 \le \nu \le n)$ and $a_{n\nu'} k_{\nu'} > 0$ for some ν' such that $m < \nu' \le n$, then G < 1.

Corollary 3. If $k_{\nu} = 0$ $(m < \nu \le n)$, then G = 1.

Corollary 4. If $k_{\nu} \leqslant 0$ $(m < \nu \leqslant n)$ and $a_{n\nu'}k_{\nu'} < 0$ for some ν' such that $m < \nu' \leqslant n$, then G > 1.

In Corollaries 1-2,

$$0 \leqslant \sum_{\nu=0}^{m} a_{n\nu} k_{\nu} {\leqslant \atop <} \sum_{\nu=0}^{n} a_{n\nu} k_{\nu} = R_{n} \neq 0.$$

In Corollaries 3-4,

$$\sum_{\nu=0}^m a_{n\nu}\,k_\nu \bigg\{ {=\atop >} \bigg\} \sum_{\nu=0}^n a_{n\nu}\,k_\nu = R_n > 0. \label{eq:constraint}$$

Examples. (1) If $0 < \delta < 1$, $\alpha > -1$, then †

$$\left| \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^m A_{n-\nu}^{\delta-1} s_{\nu} \right| \le G \max_{0 \le \mu \le m} \left| \frac{1}{A_n^{\mu}} \sum_{\nu=0}^{\mu} A_{\mu-\nu}^{\delta-1} s_{\nu} \right|$$
(38)

for $0 \le m < n$, where

$$G = \frac{1}{A_n^{\alpha}} \left| \sum_{\nu=0}^m A_{n-\nu}^{\delta-1} A_{\nu}^{\alpha-\delta} \right|, \tag{39}$$

and equality is attained in (38) if and only if

$$s_{\nu} = C A_{\nu}^{\alpha - \delta} \quad (0 \leqslant \nu \leqslant m). \tag{40}$$

Further,

$$G \begin{cases} < 1 & (\alpha > \delta - 1) \\ = 1 & (\alpha = \delta - 1) \\ > 1 & (-1 < \alpha < \delta - 1). \end{cases}$$
(41)

Here $b_{\mu\nu} = A_{\mu-\nu}^{-\delta-1}$, $R_{\mu} = A_{\mu}^{\alpha} > 0$, $h_k > 0$ and

$$k_{\nu} = \sum_{\mu=0}^{\nu} A_{\nu-\mu}^{-\delta-1} A_{\mu}^{\ \alpha} = A_{\nu}^{\alpha-\delta}. \tag{42}$$

Hence $k_0 = 1$ and, for $\nu \ge 1$,

$$k_{\nu} \begin{cases} > 0 & (\alpha - \delta > -1) \\ = 0 & (\alpha - \delta = -1) \\ < 0 & (-1 - \delta < \alpha - \delta < -1). \end{cases}$$
 (43)

- (2) An example of Corollary 3 is the extension of the inequality (29) to complex s_{ν} .
- (3) Let $A = (a_{n\nu})$ be the Hausdorff matrix (\mathfrak{H}, μ) , where $\mu_{\nu} \neq 0$ $(\nu \geqslant 0)$ *i.e.*,

$$a_{n\nu} = \binom{n}{\nu} \Delta^{n-\nu} \mu_{\nu}, \quad b_{n\nu} = \binom{n}{\nu} \Delta^{n-\nu} (1/\mu_{\nu}), \tag{44}$$

where $\Delta u_{\lambda} = u_{\lambda} - u_{\lambda+1}$.

Then, if $\mu_0 > 0$ and $\Delta^p(1/\mu_\nu) \le 0$ ($\nu \ge 0$, $p \ge 1$), the matrix A satisfies the hypotheses of Theorem 2. If $R_\mu = 1$, then

$$\{k_{\nu}\} = (\mathfrak{H}, 1/\mu)\{1\} = \{1/\mu_0\},$$
 (45)

and equality is attained in (7) when $s_{\nu} = C$ ($0 \le \nu \le m$).

[†] The case $\alpha \geqslant \delta - 1$, with G replaced by K = 1, has been given by Andersen [1].

We may take

(i)
$$\mu_{\nu} = 1 / \binom{\nu + \delta}{\nu} = \delta \int_{0}^{1} t^{\nu} (1 - t)^{\delta - 1} dt, \tag{46}$$

where $0 < \delta < 1$. Then A is the Cesàro matrix of order $\delta : a_{\mu\nu} = A_{\mu-\nu}^{\delta-1}/A_{\mu}^{\delta}$.

(ii)
$$\mu_{\nu} = (\nu + 1)^{-\delta} = \frac{1}{\Gamma(\delta)} \int_{0}^{1} t^{\nu} \{ \log(1/t) \}^{\delta - 1} dt, \tag{47}$$

where $0 < \delta < 1$. Then A is the Hölder matrix of order δ .

In this case, if $R_{\mu} = 1$, we obtain

$$\left|\sum_{\nu=0}^{m} {n \choose \nu} \Delta^{n-\nu} \{ (\nu+1)^{-\delta} \} s_{\nu} \right| \leq G \max_{0 \leq \mu \leq m} \left|\sum_{\nu=0}^{\mu} {\mu \choose \nu} \Delta^{\mu-\nu} \{ (\nu+1)^{-\delta} \} s_{\nu} \right|, \quad (48)$$

where

$$G = \sum_{\nu=0}^{m} \binom{n}{\nu} \Delta^{n-\nu} \{ (\nu+1)^{-\delta} \}. \tag{49}$$

Here $h_{\mu} > 0$ $(0 \le \mu \le m)$ and $\{k_{\nu}\} = H_{\nu}^{-\delta}\{1\} = 1$. Hence there is equality in (48) if and only if $s_{\nu} = C$ $(0 \le \nu \le m)$.

Also $G(m, n) \leq G(n-1, n) < R_n = 1$.

Zeller [20] has stated that the inequality for Hölder means of order δ , $0 < \delta < 1$, with K = 1 in place of G, was obtained by Peyerimhoff [12]. But the inequality does not occur in Peyerimhoff's paper.

Jacob [9] has given an inequality for the integral analogue of Hölder means of order δ , $0 < \delta < 1$.

2.6. The next simplest case of Theorem 1 is the following result.

Theorem 3. If $A = (a_{\mu\nu})$, $R_{\mu} > 0$ and

$$a_{\mu\mu} > 0 \quad (0 \leqslant \mu \leqslant n), \qquad a_{\mu\nu} \leqslant 0 \quad (0 \leqslant \nu < \mu \leqslant n),$$
 (50)

then $b_{\mu\nu} \geqslant 0 \ (0 \leqslant \nu \leqslant \mu \leqslant n) \ and, if \ 0 \leqslant m < n$,

$$h_{\mu} \leqslant 0 \quad (0 \leqslant \mu \leqslant m), \tag{51}$$

where h_{μ} is given by (9). Further, the inequality (7) holds, with

$$G = \sum_{\nu=0}^{m} a_{n\nu} k_{\nu} / \left| \sum_{\nu=0}^{n} a_{n\nu} k_{\nu} \right|, \tag{52}$$

where

$$k_{\nu} = -\sum_{\mu=0}^{\nu} b_{\nu\mu} R_{\mu} \quad (0 \le \nu \le n),$$
 (53)

and also †

$$G(m, n) \leqslant G(n-1, n) = \frac{1}{R_n b_{nn}} \sum_{\mu=0}^{n-1} b_{n\mu} R_{\mu}.$$
 (54)

[†] Cf. §4, Theorem 7.

Proof. Since (50) implies that $b_{\mu\nu} \ge 0$ ($0 \le \nu \le \mu \le n$), we have

$$h_{\mu} = \sum_{\nu=\mu}^{m} a_{n\nu} b_{\nu\mu} \le 0.$$

Hence $h_{\mu} = e^{-\pi i} |h_{\mu}|$, so that (13) becomes (53) for $0 \le \nu \le m$, and (52) follows as (35) does in Theorem 2. Finally, (54) follows, since $a_{n\nu} k_{\nu} \ge 0$ $(0 \le \nu < n)$ and

$$h_{\mu}(n-1, n) = -a_{nn}b_{n\mu} = -b_{n\mu}/b_{nn} \le 0 \quad (0 \le \mu < n).$$

 $Example. \quad a_{\mu\nu} = A_{\mu-\nu}^{\,\,-\eta\,\,-1} \,\, (0 < \eta < 1). \,\, R_{\mu} = A_{\mu}^{\,\,\alpha} \,\, (\alpha > -1). \quad \text{Here } b_{\mu\nu} = A_{\mu-\nu}^{\,\,\eta\,\,-1}, \\ k_{\nu} = A_{\nu}^{\,\,\alpha+\eta} \,\, \text{and}$

$$G(m, n) = \frac{1}{A_n^{\alpha}} \left| \sum_{\nu=0}^{m} A_{n-\nu}^{-\eta-1} A_{\nu}^{\alpha+\eta} \right|.$$
 (55)

Clearly G(m, n) is bounded if $m < \theta n \ (0 < \theta < 1)$, but

$$G(n-1, n) = (A_n^{\alpha+\eta} - A_n^{\alpha})/A_n^{\alpha},$$

which is unbounded.

3.1. In Theorems 2 and 3, and the examples on them, the numbers k_{ν} were independent of m and n. In other words, if the hypotheses are given for all m, n such that $0 \le m < n < \infty$, then the sequences $\{s_{\nu}\} = \{Ck_{\nu}\}$ give equality in (7) for all m and n such that $0 \le m < n < \infty$.

In this section we first obtain necessary and sufficient conditions for a matrix $(a_{\mu\nu})$ to be such that equality can be attained in (7) throughout

$$\Delta$$
: the set of all pairs (m, n) such that $0 \le m < n < \infty$, (56)

with one and the same sequence $\{s_{\nu}\}$, where $s_0' \neq 0$. If $s_{\nu} = 0$ $(0 \leq \nu \leq p)$, $h_{\mu}(m, n)$ is unrestricted for $0 \leq \mu \leq p$.

For $\mu \geqslant 0$, we write Δ_{μ} for the set of pairs (m, n) such that $\mu \leqslant m < n < \infty$.

THEOREM 4. If $A = (a_{\mu\nu})$ is triangular and normal, then a necessary and sufficient condition for equality to be attainable in (7) throughout Δ , defined by (56), with a sequence $\{s_{\nu}\}$ $(s_{0} \neq 0)$ independent of m and n, is that there should be real numbers $\sigma_{n,m}$ $(0 \leq m < n < \infty)$ and ρ_{μ} $(\mu \geq 0)$ such that

$$h_{\mu}(m, n) = e^{i(\sigma_{n, m} - \rho_{\mu})} |h_{\mu}(m, n)| \quad (0 \le \mu \le m)$$
 (57)

for all (m, n) in Δ , where $\sigma_{n, m}$ is independent of μ and ρ_{μ} is independent of m and n, $h_{\mu}(m, n)$ being defined by (9).

Proof. There will be equality in (7) throughout Δ , with a given sequence $\{s_{\nu}\}$, if and only if nothing is thrown away at the steps corresponding to (*) and (**) in the proof of Theorem 1.

If t_{μ}' is the transform of s_{ν}' , given by (3), necessary and sufficient conditions are

(i)
$$h_{\mu}t_{\mu}' = e^{i\sigma_{n, m}} |h_{\mu}t_{\mu}'|$$
(ii)
$$|h_{\mu}t_{\mu}'| = M_{m} |h_{\mu}| R_{\mu}$$
(0 \le \mu) (58)

for all (m, n) in Δ , where $\sigma_{n, m}$ is independent of μ , and if $s_0' \neq 0$,

$$\boldsymbol{M}_{m} = \max_{\mathbf{0} \leq \mu \leq m} |t_{\mu}'|/R_{\mu} > 0.$$

Necessity. Assume that there is a sequence $\{s_{\nu}'\}$ $(s_0' \neq 0)$ giving equality in (7) throughout Δ .

First suppose that (a) for each μ ($\mu \ge 0$) there is a pair $m = m_{\mu}$, $n = n_{\mu}$ in Δ_{μ} such that $h_{\mu}(m_{\mu}, n_{\mu}) \ne 0$. Then, if we put $m = m_{\mu}$, $n = n_{\mu}$ in (ii) and cancel the non-zero factor, we see that (ii) implies

(ii)'
$$|t_{\mu}| = M_{m_{\mu}} R_{\mu} \quad (\mu \ge 0).$$

Since $m_{\mu} \geqslant \mu$, (ii)' implies

(ii)"
$$|t_{\mu}| = M_{\mu} R_{\mu} \quad (\mu \geqslant 0).$$

Since t_{μ} is independent of m and n, it follows from (ii)" that there are numbers ρ_{μ} such that

$$t_{\mu}' = M_{\mu} e^{i\rho_{\mu}} R_{\mu} \quad (\mu \geqslant 0). \tag{59}$$

Substituting from (59) into (i), we obtain

$$h_{\mu}\,M_{\,\mu}\,e^{i\,\rho_{\mu}}\,R_{\,\mu} = e^{i\sigma_{\rm m,\,m}}\,\big|\,h_{\,\mu}\,\big|\,M_{\,\mu}R_{\,\mu} \quad (0\leqslant \mu\leqslant m < n < \infty), \label{eq:hamiltonian}$$

which is the equivalent to (57), since $M_{\mu} > 0$, $R_{\mu} > 0$.

Thus (57) is *necessary* when (a) holds.

Next suppose that condition (a) does not hold, and let G be the set of values of μ for which $h_{\mu}(m,n)=0$ throughout Δ_{μ} . Then for every μ not in G, the same argument shows that there must be numbers $\sigma_{n,m}$ and ρ_{μ} satisfying (57). But for every μ in G, conditions (i), (ii) and (57) are automatically satisfied. Thus (57) is necessary when condition (a) does not hold.

Sufficiency. If (57) holds, then (i) and (ii) are satisfied, with $M_m = M > 0$, when $t_{\mu}' = Me^{i\lambda}e^{i\rho\mu}R_{\mu}$, and hence there is equality in (7) throughout Δ when $s_{\nu}' = Ck_{\nu}$ ($C \neq 0$), with k_{ν} as in (13).

Thus (57) is sufficient, and the theorem is proved.

3.2. The class of sequences $\{s_{\nu}\}$ giving equality in (7) throughout Δ is most easily determined in the case where $h_{\mu}(m, n) \neq 0$ $(0 \leq \mu \leq m)$ for all (m, n) in Δ . In the general case, where some of the $h_{\mu}(m, n)$ may vanish, we must analyse the distribution of the non-vanishing $h_{\mu}(m, n)$.

We shall say that two non-negative integers μ_1 , μ_2 are linked, if there is a pair (m', n') in $\Delta_{\mu_1} \cap \Delta_{\mu_2}$ such that $h_{\mu_1}(m', n') \neq 0$ and $h_{\mu_2}(m', n') \neq 0$. If a non-negative integer μ is not linked to any other non-negative integer we shall call μ isolated.

We shall say that a set E of non-negative integers is *connected*, if for every pair μ_{α} , μ_{β} in E there is a finite chain of linked pairs (μ_0, μ_1) , (μ_1, μ_2) , ..., (μ_{N-1}, μ_N) such that $\mu_0 = \mu_{\alpha}$, $\mu_N = \mu_{\beta}$.

The simplest case from this point of view is that in which the set $\mu \ge 0$ is connected. In the next theorem we determine in this case the class of $\{s_{\nu}\}$, with $s_{0} \ne 0$, giving equality in (7) throughout Δ .

THEOREM 5. If condition (57) holds, and the set $\mu \geqslant 0$ is connected (in the sense defined), then there is equality in (7) throughout Δ , with $s_0 \neq 0$, if and only if

$$s_{\nu} = Ck_{\nu} \quad (\nu \geqslant 0), \tag{60}$$

where C is a non-zero constant and

$$k_{\nu} = \sum_{\mu=0}^{\nu} b_{\nu\mu} e^{i\rho\mu} R_{\mu} \quad (\nu \geqslant 0),$$
 (61)

 $(b_{\mu\nu})$ being the inverse of $(a_{\mu\nu})$.

If (57) holds and the set $\mu \geqslant 0$ is not connected, then conditions (60)–(61) are sufficient for equality in (7) throughout Δ .

Proof. Let $\{s_{\nu}\}$ be an arbitrary sequence, with $s_{0} \neq 0$, and write

$$t_{\mu} = e^{i\theta_{\mu}} |t_{\mu}| \quad (\mu \geqslant 0), \tag{62}$$

where t_{μ} is given by (3) and θ_{μ} is real. Then $\{s_{\nu}\}$ will give equality in (7) throughout Δ if and only if

$$\begin{array}{ll} \text{(i)}_{a} & h_{\mu}\,e^{i\theta\mu}\,|\,t_{\mu}\,|=e^{i\phi_{n,\,m}}\,|\,h_{\mu}\,t_{\mu}\,| \\ \text{(ii)}_{a} & |h_{\mu}\,t_{\mu}\,|=M_{m}R_{\mu}\,|\,h_{\mu}\,| \end{array} \right\} \quad (0\leqslant\mu\leqslant m)$$

for all (m, n) in Δ , where $M_m > 0$ and $\phi_{n, m}$ is real and independent of μ .

Necessity. Suppose that there is equality in (7) throughout Δ with t_{μ} given by (62).

Since (57) holds, it follows from $(i)_a$ and $(ii)_a$, as in the proof of Theorem 4, that

$$e^{i(\phi_{n, m} - \theta_{\mu})} |h_{\mu}(m, n)| = e^{i(\sigma_{n, m} - \rho_{\mu})} |h_{\mu}(m, n)| \quad (0 \leq \mu \leq m)$$
(63)

for all (m, n) in Δ .

Now let μ_{α} , μ_{β} be an arbitrary pair of non-negative integers. Since the set $\mu \geqslant 0$ is connected, there is a finite chain of linked pairs (μ_{j-1}, μ_j) (j=1, 2, ..., N), with $\mu_0 = \mu_{\alpha}$, $\mu_N = \mu_{\beta}$, and pairs (m_j, n_j) in $\Delta_{\mu_{j-1}} \cap \Delta_{\mu_j}$ such that $h_{\mu_{j-1}}(m_j, n_j) \neq 0$, $h_{\mu_j}(m_j, n_j) \neq 0$ (j=1, 2, ..., N).

Substituting $m = m_j$, $n = n_j$ into (63), with $\mu = \mu_{j-1}$ and $\mu = \mu_j$, and eliminating the terms involving (m_i, n_j) , we find that

$$\exp\{i(\theta_{\mu_{i-1}} - \rho_{\mu_{i-1}})\} = \exp\{i(\theta_{\mu_i} - \rho_{\mu_i})\} \quad (j = 1, 2, ..., N), \tag{64}$$

and hence that

$$\exp\{i(\theta_{\mu_{\alpha}} - \rho_{\mu_{\alpha}})\} = \exp\{i(\theta_{\mu_{\beta}} - \rho_{\mu_{\beta}})\}. \tag{65}$$

Since μ_{α} , μ_{β} are arbitrary non-negative integers, this proves that

$$e^{i(\theta_{\mu}-\rho_{\mu})} = e^{i\lambda} \quad (\mu \geqslant 0), \tag{66}$$

where λ is real and independent of μ , m and n.

Also, from (ii)_a, $M_{\mu_{j-1}} = M_{m_j} = M_{\mu_j}$, (j = 1, 2, ..., N), so that $M_{\mu_{\alpha}} = M_{\mu_{\beta}}$. Thus $M_{\mu} = M > 0$, and

$$t_{\mu} = M e^{i\lambda} e^{i\rho_{\mu}} R_{\mu} = C e^{i\rho_{\mu}} R_{\mu} \quad (\mu \geqslant 0), \tag{67} \label{eq:67}$$

where C is a non-zero constant, and hence $\{s_{\nu}\}$ satisfies (60)–(61).

Sufficiency. We have already shown that the condition $t_{\mu} = Ce^{i\rho\mu} R_{\mu}$, which is equivalent to (60)–(61), is sufficient.

This completes the proof.

Remark. In the general case, the set $\mu \geqslant 0$ will be composed of a sequence $\{D_j\}$ of sets, where each D_j is either a connected set or an isolated integer. Also the union of the intervals $\nu \leqslant \mu \leqslant m_{\nu}$, where $h_{\nu}(m_{\nu},n_{\nu}) \neq 0$, is a set of distinct intervals which, together with the point-intervals formed by the remaining isolated integers, is a sequence $\{I_k\}$ of intervals $\sigma_k \leqslant \mu < \sigma_{k+1}$. Each D_j is covered by some I_k , and in the case of equality $e^{i\lambda}$ is constant in each D_j , while M_{μ} is constant in each I_k and M_{μ} is non-decreasing. Thus there will be equality in (7) throughout Δ , with $s_0 \neq 0$, if and only if (I) $t_{\mu} = M_{\sigma_k} e^{i\lambda_j} e^{i\rho_{\mu}} R_{\mu}$ for $\mu \in D_j \subseteq I_k$, whenever D_j is a connected set, and (II) $|t_{\mu}| \leqslant M_{\sigma_k} R_{\mu}$ whenever μ is an isolated integer such that $\mu \neq 0$ and $\mu \in I_k$, where $|t_0| = M_0 R_0 = |s_0| > 0$.

4. In his later paper [22], Zeller gave two theorems (Satz 1 and Satz 2) which would not normally have been suggested by the results of the present paper.

Zeller's Satz 2 completes the theorem of Wilansky and Zeller, mentioned above in §2.5, in a necessary and sufficient form. It may be modified so as to complete Theorem 2 similarly.

Zeller assumed in Satz 2 that the matrix A is triangular and normal and has non-negative elements, but he need only have chosen the sign of the *diagonal* elements. By omitting the redundant hypothesis, we are

led to a similar completion of Theorem 3. The converse results may be combined into the following single theorem, in which *either* the upper signs or the lower signs may be taken.

Theorem 6. If $A = (a_{\mu\nu})$ is triangular and normal, and $a_{\mu\mu} > 0$, $R_{\mu} > 0$ for $0 \le \mu \le n \le N$, and if

$$\gamma(m, n) = \frac{1}{R_n} \sum_{\nu=0}^{m} a_{n\nu} r_{\nu} \ge 0 \quad (0 \le m < n \le N),$$
 (68)

where

$$r_{\nu} = \pm \sum_{\mu=0}^{\nu} b_{\nu\mu} R_{\mu} \quad (0 \le \nu \le N),$$
 (69)

 $(b_{\mu\nu})$ being the inverse of $(a_{\mu\nu})$, and if the inequality

$$\left| \frac{1}{R_n} \sum_{\nu=0}^m a_{n\nu} s_{\nu} \right| \leq \gamma(m, n) \max_{0 \leq \mu \leq m} \left| \frac{1}{R_{\mu}} \sum_{\nu=0}^{\mu} a_{\mu\nu} s_{\nu} \right| \tag{70}$$

holds for all m, n such that $0 \le m < n \le N$, and for all finite sequences $\{s_{\nu}\}\ (0 \le \nu < N)$, then

$$a_{\mu\nu} \begin{cases} \geqslant 0 \\ \leqslant 0 \end{cases}, \quad b_{\mu\nu} \begin{cases} \leqslant 0 \\ \geqslant 0 \end{cases} \quad (0 \leqslant \nu < \mu \leqslant N), \tag{71}$$

and $\gamma(m, n)$ is the best possible factor in (70).

Proof. Since G(m, n), given by (8)-(9), is the best-possible factor in (7), the truth of (70) in the cases stated implies that

$$G(m, n) \leqslant \gamma(m, n) \quad (0 \leqslant m < n \leqslant N) \tag{72}$$

and hence, by (8), (9), (68) and (69), that

$$\frac{1}{R_n} \sum_{\mu=0}^m |h_{\mu}(m, n)| R_{\mu} \leq \pm \frac{1}{R_n} \sum_{\nu=0}^m a_{n\nu} \sum_{\mu=0}^{\nu} b_{\nu\mu} R_{\mu} = \pm \frac{1}{R_n} \sum_{\mu=0}^m h_{\mu}(m, n) R_{\mu}.$$

This implies that

$$h_{\mu}(m, n) \begin{cases} \geqslant 0 \\ \leqslant 0 \end{cases} \quad (0 \leqslant \mu \leqslant m < n \leqslant N). \tag{73}$$

With the upper signs, (73) implies that

$$h_{\mu}(n-1, n) = -a_{nn} b_{n\mu} \geqslant 0 \quad (0 \leqslant \mu < n \leqslant N).$$
 (74)

Since $a_{nn} > 0$, (74) implies that $b_{n\mu} \le 0$ for $0 \le \mu < n \le N$, and hence also that $a_{n\mu} \ge 0$ for $0 \le \mu < n < N$.

With the lower signs, (73) implies that

$$h_m(m, n) = a_{nm} b_{mm} \leqslant 0 \quad (0 \leqslant m < n \leqslant N).$$
 (75)

Since $b_{mm}>0$, (75) implies that $a_{nm}\leqslant 0$ for $0\leqslant m\leqslant n\leqslant N$, and hence also $b_{nm}\geqslant 0$ for $0\leqslant m< n\leqslant N$.

Thus the relations (71) hold, with $a_{\mu\mu} = 1/b_{\mu\mu} > 0$, and hence it follows from Theorems 2 and 3, (35) and (52), that

$$\gamma(m, n) = G(m, n). \tag{76}$$

This completes the proof.

Zeller's Satz 1 may be restated in the form

Theorem 7. If the matrix $A=(a_{\mu\nu})$ is triangular and normal, then a necessary and sufficient condition for the inequality (1) to hold, with K=1, for all m, n such that $0 \le m < n \le N$, and all finite sequences $\{s_{\nu}\}$ $(0 \le \nu < N)$, is that

$$\sum_{\mu=0}^{n-1} |b_{n\mu}| R_{\mu} \leq |b_{nn}| R_{n} \quad (0 < n \leq N), \tag{77}$$

where $B = (b_{\mu\nu})$ is the inverse of A.

Proof. The condition is necessary, since

$$h_{\mu}(n-1, n) = -a_{nn}b_{n\mu} = -b_{n\mu}/b_{nn},$$

and hence (77) is equivalent to

$$G(n-1, n) = \frac{1}{R_n} \sum_{\mu=0}^{n-1} |h_{\mu}(n-1, n)| R_{\mu} \le 1 \quad (0 < n \le N).$$

The sufficiency will now follow from †

LEMMA. If $G(n-1, n) \leq 1$ for $1 \leq n \leq N$, then

$$G(0, n) \leq G(1, n) \leq ... \leq G(n-1, n)$$

for $2 \leqslant n \leqslant N$.

Let m have any value such that $0 \le m < n-1 \le N-1$. Then

$$\begin{split} R_n G(m, n) &= \sum_{\mu=0}^m R_\mu \left| \sum_{\nu=\mu}^m a_{n\nu} b_{\nu\mu} \right| \\ &\leq \sum_{\mu=0}^m R_\mu \left| \sum_{\nu=\mu}^{m+1} a_{n\nu} b_{\nu\mu} \right| + \left| a_{n, m+1} \right| \sum_{\mu=0}^m \left| b_{m+1, \mu} \right| R_\mu \\ &\leq \sum_{\mu=0}^m R_\mu \left| \sum_{\nu=\mu}^{m+1} a_{n\nu} b_{\nu\mu} \right| + \left| a_{n, m+1} b_{m+1, m+1} \right| R_{m+1} \\ &= \sum_{\mu=0}^{m+1} R_\mu \left| \sum_{\nu=\mu}^{m+1} a_{n\nu} b_{\nu\mu} \right| = R_n G(m+1, n). \end{split}$$

This proves the lemma, and hence the theorem.

[†] Zeller's argument proceeded from the identity (6), which we have not used.

References

- A. F. Andersen, "On the extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind", Proc. London Math. Soc. (3), 8 (1958), 1-52.
- L. S. Bosanquet, "A mean value theorem", Journal London Math. Soc., 16 (1941), 146-148.
- "Note on convergence and summability factors (III)", Proc. London Math. Soc. (2), 50 (1949), 482-496.
- H. R. Coomes and V. F. Cowling, "Summability and associative infinite matrices", *Michigan Math. Journal*, 8 (1961), 65-70.
- 5. P. Dienes, "Notes on linear equations in infinite matrices", Quarterly Journal (Oxford) (1), 3 (1932), 253-268.
- 6. G. H. Hardy, Divergent series (Oxford, 1949).
- and Riesz, The general theory of Dirichlet's series (Cambridge Tract No. 18, 1916; reprinted 1952).
- M. Jacob, "Über die Verallgemeinerung einiger Theoreme von Hardy in der Theorie der Fourier' schen Reihen", Proc. London Math. Soc. (2) 26 (1927), 470-492.
- 9. ——, "Über die Äquivalenz der Cesàroschen und Hölderschen Mittel für Integrale bei gleicher reelle Ordnung k>0", Math. Zeitschrift, 26 (1927), 672-682.
- W. Jurkat and A. Peyerimhoff, "Mittelvertsätze bei Matrix- und Integraltransformationen", Math. Zeitschrift, 55 (1951), 92-108.
- M. S. MacPhail, "On some recent developments in the theory of series", Canadian J. of Math., 6 (1954), 405-409.
- A. Peyerimhoff, "Konvergenz- und Summierbarkeitsfaktoren", Math. Zeitschrift, 55 (1951), 23-54.
- M. Riesz, "Une méthode de sommation équivalente à la méthode des moyennes arithmétiques", Comptes Rendus, 152 (1911), 1651-1654.
- "Sur un théorème de la moyenne et ses applications", Acta. Litt. ac Sci. Univ. Hungaricae Szeged, 1 (1923), 114-126.
- J. B. Tatchell, "Limitation theorems for triangular matrix transformations", Journal London Math. Soc., 40 (1965), 127-136.
- S. Verblunsky, "On the limit of a function at a point", Proc. London Math. Soc. (2) 32 (1931), 163-199.
- A. Wilansky, "Summability: The inset. The basis in summability space", Duke Math. J., 19 (1952), 647-660.
- "Distinguished subsets and summability invariants", Journal d'Analyse Math., 12 (1964), 327-350.
- and K. Zeller, "Abschnittsbeschränkte Matrixtransformationen; starke Limitierbarkeit", Math. Zeitschrift, 64 (1956), 258-269.
- 20. K. Zeller, "Abschnittskonvergenz in FK-Räumen", Math. Zeitschrift, 55 (1951), 55-70.
- 21. ——, Theorie der Limitierungsverfahren (Berlin, 1958).
- "Abschnittsabschätzungen bei Matrixtransformationen", Math. Zeitschrift, 80 (1963), 355-357.

University College, London.

(Received on the 12th of March, 1965.)