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AN INEQUALITY FOR SEQUENCE TRANSFORMATIONS
L. S. BoSANQUET

1.1. Let A=(a,) be a normal triangular matriz, i.e., one for which
a’/t;ﬁé 0 (n>0), @y = 0 (v>p).
Inequalities of the following form have entered naturally into analysis:

1 m

a,,S
nyv =y
Rn p=0

f‘,a,wsy ) (1

w v=0

<Kmn!
Opus<m
where (i) 0<m<mn, (i) B,>0 (x>0), (ili) K is a constant, depending
on the matrix 4 and the sequence {R,}, but independent of m, n and the
finite sequence {s,}.

The factor 1/R, is convenient for classification, but we may omit it,
by replacing @,,/R,, by c,,, so that the inequality becomes

o

]
< K max
Ogpsm

(2)

m
2 Cny Sy
=0

y=

Couv Sy
0/‘

The inequalities (1) and (2) only hold for restricted classes of matrices.
For example, if |c,,| >0 as n—>o0, (2) breaks down for large n. Again,
if ¢,,,— 0, (2) gives no information for large ».

But these cases remain significant if we consider instead inequalities
with the constant K replaced by a factor G'=G(m, n), independent of
{s,}, but depending on m and ». In the present paper I begin by obtaining
an inequality of this kind, for an arbitrary normal triangular matrix with
complex elements. The factor ¢ is best-possible, in the sense that equality
is attained with a suitable {s,}, depending onm and n. In §3Igivenecessary
and sufficient conditions for equality to be attained with a sequence {s,}
which is independent of m and =.

For an important class of matrices with positive elements, the same
inequality has been obtained by Wilansky and Zeller [19], and discussed
further by Zeller [22]. An account of earlier results is given in §2, in
conjunction with examples. Zeller’s later results are discussed in §4.

1.2, If ,
t,u=l'2=:0a/wsv (1=0), (3)

then v
s, = Eobmt” (v=0), (4)

pre=

where B=(b,,) is the inverse of the normal triangular matrix 4 =(a,,).
The matrix B is also triangular and normal. From the identities
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AB=BA=1, we have
1 (v=p)

#°

E»aﬂbM:{O (v<p) (5)
and @ 1 (v=,u)

Eyb”"a“:{() (v<p). (©)

We shall make frequent use of (3), (4) and (5).

Tueorem 1. If A=(a,) is a normal triangular matriz, with complex
elements, B=(b,,) is its inverse, B, > 0 and 0 <m <n, then

1 m
2 anv SV

1 ¢
<G max | — Y a,s, 7
R’n v=0 Opsm R# V§0 “ § ( )
for all finite sequences {s,} (v=0, 1, ..., m), where
1 m
G=G(m,n)= 7 Eolhﬂ[Rﬂ, (8)
kﬂ = h/t (m, n)= vgﬂ @y bu/t' (9)
If
h,=e"ulh,|#£0 (0<p<m), (10)
where p, = p,(m, n), then there is equality in (7) if and only if
5,=Ck, (0<v<m) (11)
where C is an arbitrary constant, and k,=k,(m, n) satisfies the equationt
Sa,k=cmR, (0<p<m), (12)
r=0
i.e. ’ _
k,,=ﬂ§=‘,‘0b,,ﬂe“’#Rﬂ (0<v<m). (13)

If h,=0 for some p (and the corresponding p, is chosen arbitrarily), the
conditions (11)-(13) are sufficient for equality.
In all cases, the factor G may be expressed in the form

m

Z a?’lv kV M

y=0

G=

- 14
= (14)

n

Proof. Let m, n be given integers such that 0 <m <n. Write]

m m v ‘ m m m
tn, m= X 0y8,= 30, 3 bv,u t‘u =X tﬂ PIR bv‘u =2 hy f[t’
=0 v=0 #=0 p=0  v=y #=0

t If ¢ = 0, ky is arbitrary.
1 Cf. Wilansky and Zeller [19] or Zeller [21; p. 43].
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where %, is given by (9). Then

1 1 m
. _ *
Rn |tn,m1< Rn ﬂgolhﬂtﬂ\ ( )
1 = M m

=7{n—ﬂ§0|hﬂ|Rﬂ.|t#|/Rﬂs . ,Eolh”‘R” (%)

=GM,

where
M= max [¢,|/R, (15)
opusm

and G =G (m, n) is given by (8).

This establishes the inequality (7).

We next show that G(m, n) is best-possible, in the sense that there is a
finite sequence {s,'} = {s,’ (m, n)}, such that

1 1 & ,
R =T za’/wsv . (16)

=G max
R,u v=0

0<usm

n !
Z Ay Sy
y=0

n

Now equality is attained in (7) if and only if nothing is thrown away
at the steps (*) and (¥¥). Thus there is equality in (7) if and only if

(i) ht,=e?h,t,] (O p<m),
where 4 is real and independent of p,
(i) |h t|=M|h,| R, (0w m),
where M is non-negative and independent of .
First supposethat b, # 0 (0 <p<m). Then the conditions become

@)’ t,=e. evult,|
(ii)’ ]I;ﬂ1=MRﬂ ’ } (O<p<m),

for some real 6 and some M > 0, where p, satisfies (10).
Conditions (i)’ and (ii)" hold if and only if
t,=Me“.ctn R,

i.e. .
’ t,=Ceru R,

| o<pem (7)

for some constant C. ,
Thus there is equality in (7) if and only if

& .
anﬂ,,s,,=0e’/’ﬂ R, O<p<m). (18)

Now let &, be defined as so to satisfy (12)-(13). Then the conditions
for equality are satisfied if and only if (11) holds.

Neaxt suppose that h,=0 for one or more p.. If h,=0, where 0< p’ <m,
conditions (i) and (ii) are automatically satisfied for p=p', and impose no
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restriction on ¢,, except that |f,|< MR, by (15). Hence the conditions
for equality are satisfied, in particular, when s, satisfies (11).
Finally, if we substitute s," =k, into (16) ,we obtain

|
S ank, eitn R, =€

R n i3

Thus @ is always expressible in the form (14).
This completes the proof of the theorem.

= @ max I
Ospsm

Remarks. (1) More precisely, there is equality in (7) if and only if

@) t,=Ceion R, (h,#0)
and } (0<usm). (19)
(IT) ltﬂISIOIRﬂ (h,=0)
In particular, if , =0 for all u (0 < u <m), then C is indeterminate, and
there is always equality in (7), both sides being zero. In this case a,,=0
for0<v<m.

(2) If b,,=0, and ¢, =T, then the contribution of ¢, to s,,_ b b t

vup
isd,,T,ifv>p', and zeroif v <p'. Hence its contribution tot, ,, = }_, 8,

ISZakaTO

v Yy
y=p'
Thus the arbitrary ¢, contributes nothing to the left-hand side of the

inequality. And it contributes nothing to the right-hand side provided
|T|<M' R, where M'= max |t]|/R,

opsm,

2.1. The inequality

m

3 A3l

n—y < max
y=0

opusm

Z Aé-1g

~y 7V
p=0 #

, (20)

where 0 <8< 1,0<m<n and
A= (":") (0> —1), (21)

was first stated by Jacob [8], and later found independently by niyself
[2], [3]. The proof in [2] is valid for complex s,.

Jacob said that the inequality was ¢ already known ’, and referred to
Lemma 7 of Hardy and Riesz [7], which is Riesz’s inequality (or mean
value theorem) for typical means:

U (x—u ‘1A(u)du’ max v(v—u)“‘lA(u)du , (22)
osv<s
where 0<8<1,0< €< xand
Auw)= ¥ a, (Ag<A; <... and A, —>o0). (23)

A<t
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Riesz’s inequality is not the same as Jacob’s, even when A, =, but an
examination of the proof in [7] shows that (20) may be established by a
similar argument, with Abel’s lemma playing the role of the second mean
value theorem.

2.2. In a more general form of Riesz’s inequality, A(u) is replaced
by a function ¢{u)e L(0, ) and the maximum by the essential upper bound.
The proofs of the inequality [13], 7], [14], [16], show that a factor

CG=G(¢, %)= f(x w)Plu—fdu<l (24)

)F(l
may be inserted on the right-hand side. Moreover, this factor is best-
possible. For equality is attained if we put ¢(u)= Cu=°.

I have obtained some extensions of Riesz’s inequality in an earlier
investigation not yet presented for publication.

2.3. The general inequality (2) was introduced by Jurkat and
Peyerimhoff [10].

Peyerimhoff [12] had shown that, if the normal triangular matrix
O'=(c,,) defines a regular sequence-to-sequence transformation, then the
space Oy, of sequences s = {s,} whose transforms ¢= {t,} are null sequences,
will have the propertyt that every sequence s= {s,} in C is the weak limit
of the sequence}

890 = (89, 81, evy 4 0, 0, ...), (25)
if and only if

m

2 Sy <Ksup Ecl“‘s" 4 (26)

p=0 u=0 | v=0

whenever 0 <m <n < oo and s € (.

Jurkat and Peyerimhoff showed that (26) holds for all se C if and only
if the inequality (2) holds for all finite sequences (s, s, ..., ;) and all
m, n such that 0<m<n<oo. Their argument is valid for any normal
triangular matrix and with C, replaced by any set ¢ containing all the
sequences s whose transforms are terminating sequences

B = (£, by vees by 0,0, .00). (27)

A number of other properties have also been shown to be equivalent
to (26), and hence also to (2). For an account of these, see Wilansky [18]
and the references there to [4], [11], [17], [19], [20], [21].

t Schwache Abschnittskonvergenz (SAK); weak sectional convergence.
1 t.e. F(s)=lim F(s®) for every linear functional F(s) defined on C,.
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2.4, Jurkat and Peyerimhoff [10] found sufficient conditions for the
inequality (2) (or (1) with B, =1) to hold. Their conditions were

. . @ a v Q0
(i) a,>0 (O<v<p<n), (i) 22> P2 (i) 2= <K, (28)
@y vy @y vy %iy0
for 0 v, <va <y <pg<n.
If condition (iii) is omitted and @, is replaced by ¢, =a,/a,, thenc,,

satisfies the same conditions, with K =1, and hence, as their proof shows,

1 m 2
> a,,s, | < max > @Sy |5 (29)
Qpo v=0 osusm i By v=0

for 0<m <n, which is an inequality of the form (1), with B,=a,. Their
proof, which holds for real s,, is an extension of that in [3].

2.5. Wilansky and Zeller [19] (see Zeller [21, p. 43]) obtained
the inequality (1), with B,=1, under the conditions

(30)

@, =1/b,,>0 (1>0), a,>0 (0<v<p),
w

b,<0 (0<v<u), B,=30,>0 (v>0).
pu=0

Their proof, which is valid for complex s,, shows that the constant
K =1 may be replaced by the factor

G= % h,, where k, >0, (81)
#=0
h, being given by (9). This implies, since B, > 0, that
G= Sn:anu‘By< %am)Buz % % anubuﬂ:l: (32)
=0 y=0 p=0 v=p

and that equality is attained in (7), with B, =1, whent, = C,i.e.,s,=CB,.

They also observed that Jurkat and Peyerimhoff’s criterion, with
K =1, isincluded in theirs. This is a generalisation of Kaluza’s theorem ;
¢f. Hardy [6; Theorem 22). Later Zeller [22]remarked that the conditions
6,,>0 (20), 5,,<0 (0<v<p) themselves imply that a,,>0 (0<v<p),
so that the hypothesis on a,, may be omitted. This is a generalisation of
a sort of converse of Kaluza’s theorem ; cf. Dienes [5],1

These results may be incorporated in the following theorem, which is a
corollary of Theorem 1. The hypotheses of Theorem 2 are satisfied, in
particular, under conditions (28), with (iii) omitted.

t Dr. Vermes showed me that if B is n Xn and triangular, with diagonal matrix D,
n—1

then B! = X DvYD—B)», since (D—B)» = 0. See also Tatchell [15]. Professor
r=0

Peyerimhoff gave me two further references: (1) G. de Rham, Publ. Inst. Math. Belgrade,

4 (1952), 133-134, (2) W. B. Jurkat, Proc. International Congress of Mathematicians

Amsterdam, 2 (1954), 126.
(o}
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TrEOREM 2. If B=(b,,) is the inverse of a normal triangular matriz
A =(a,), and if
b,,>0 (0<u<n), b, <0 (Osv<p<n) (33)
and B,>0 (0<pu<n), thena, >0 (0Sv<p<n)and, if 0Sm<n,
B0 (0<p<m), (34)

where b, is given by (9). Further the inequality (7) holds, with

| Sank| | Sank, (35)
where k, satisfies
Za,w = (O<p<n), (36)
i.e., v
k,= E b,R, (0<v<n). (37)

Proof. Since conditions (33) imply that «
have, as in Wilansky and Zeller’s theorem,

20 (0Sv<usn), we

w =

m n
h,u= Zanvbuyz_ > a’nvbm>0 (O<p<m).
v=u v=m+1

Thus
h,=e%h,| (0<p<m),

and (13), with p, =0, becomes (37) for 0 <v<m. Hence (35) follows from
(14), together with (36) for u=mn.

This proves the theorem.

In particular, we have

CoroLrLarY 1. If k,20 ( <n), then G<1.
If R,=1, this is Wilansky and Zeller’s theorem.

CoroLraRY 2. Ifk, >0 (0<v<n)and a,, k, >0 for some v' such that
m<v' <n,then G<1.

CoroLLARY 3. Ifk,=0 (m<v<n), then G=1.

COoROLLARY 4. If k,<0 (m<v<n) and a, /k,<0 for some v' such
that m <v' < n, then G>1.

In Corollaries 1-2,

m <)l n
0< X anvkv{:} > anvkv=R'n7éO'
0 r=0

p=
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In Corollaries 3—4,
m —\ =
Zanvkv: } zanvkv=Rn>O'
y=0 > v=0

Examples. (1) If 0<8<1, a> —1, then {

1
3 A1 | <@ max A (38)
An“ »=0 Ospusm n  v=0 #
for 0 <m < n, where
1 m
G= 3, A5 Az, (39)
Ana v=0
and equality is attained in (38) if and only if
s,=04,2% (0€v<m). (40)
Further,
<l («>8-1)
Gi=1 (a=6-1) (41)
>1 (-l<a<d-—1).
Here b, =A%, R,=4,*>0, k>0 and
k,= EO 470004 2= 4,270, (42)

Hence ky=1and, for v> 1,
>0 (¢—8>-1)
kE,{=0 (a2—06=-1) } (43)
<0 (-l1-8<a—-6<-1)

(2) An example of Corollary 3 is the extension of the inequality (29)
to complex s,.

(3) Let 4=(a,,) be the Hausdorff matrix (§, u), where p,#0 (v=0)
1.e.,

an=(7)arn b= () A1), (44)

where Au,=u, —uy, ;.
Then, if 5> 0 and A?(1/u,) <0 (v2 0, p> 1), the matrix A satisfies the
hypotheses of Theorem 2. If R,=1, then

{k.}= (£, 1) {1} = {1/uo}, (45)

and equality is attained in (7) when s,=C (0<v<m).

t The case «>8 -1, with @ replaced by K = 1, has been given by Andersen [1].
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We may take
() My=1/(”+8) 8f P(L—t)-1dt, (46)

where 0<§<1. Then 4 is the Cesaro matrix of order 8:a,,=A4571/4 °.
1
(i) o= (1) = s [ og -2, (47)

where 0 <8< 1. Then 4 is the Holder matrix of order 8.
In this case, if B .= 1, we obtain

m /n - _ u w N _
§()A {v+1)7}s, | <G max go(v)zv (1) s, . (48)

where "
0= 5 (7 )4t (49)

Here k,>0 (0<pu<m) and {k,}=H,~?{1}=1. Hence there is equality
in (48) if and only if 5,=C (0 v<m).

AlsoG(m,n)<Gn—-1,n)< R, =1.

Zeller [20] has stated that the inequality for Holder means of order §,
0<d <1, with K =1 in place of G, was obtained by Peyerimhoff [12]. But
the inequality does not occur in Peyerimhoff’s paper.

Jacob [9] has given an inequality for the integral analogue of Holder
means of order 8, 0 <8 < 1.

2.6. The next simplest case of Theorem 1 is the following result.
Turorem 3. IfA=(a,), B,>0and
a,,>0 (O<p<n), 2,<0 (0<v<p<n), (50)
thend,, >0 (0<v<p<n)and, if 0<m<n,
h,<0 (0<p<m), (51)
where b, is given by (9). Further, the inequality (7) holds, with

G= % anu Ay v ’ (52)
v=0
where »
kv= - 2 bv,u R,u (0< VS’/L), (53)
=0
and alsot
Gm,n)<Gn~-1,n)= —— Ebn 54
( (1=1,0)= 55— 5 bus By (54)

t Cf. §4, Theorem 17.
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Proof. Since (50) implies that b,,> 0 (0<v<p<n), we have

m
kﬂ= Yy anvbyﬂs().
=g

Hence h,=e="![h,|, so that (13) becomes (53) for 0<v<m, and (52)
follows as (35) does in Theorem 2. Finally, (54) follows, since a,,k,>0
(0<v<n)and

h/t(n_ 1, n)= _annbn,u: _bn,u/bnnso (OS[L<7’L)
Example. a,=A4.771 (0<n<l). B,=A4,% (x> —1). Hereb, =47"3,
k,=A4,2" and
1
A a

n

G(m, n)=

%AZZ:IA,M : (55)

Clearly G/(m, n) is bounded if m<80n (0<f0<1), but
G(n- 1, n) = (Ana+”_Ana)/Ana’

which is unbounded.

3.1. In Theorems 2 and 3, and the examples on them, the numbers k,
were independent of m and n. In other words, if the hypotheses are given
for all m, n such that 0<m <n <oo, then the sequences {s,}={Ck,} give
equality in (7) for all m and » such that 0<m <n < 0.

In this section we first obtain necessary and sufficient conditions for a
matrix (@,,) to be such that equality can be attained in (7) throughout

A :the set of all pairs (m, n) such that 0 < m <n <0, (56)

with one and the same sequence {s,}, where s,’#0. If 5,=0 (0<v<p),
k,(m, n) is unrestricted for 0 <p<p.
For u> 0, we write A, for the set of pairs (m, n) such that u <m <n <co.

TueorEM 4. If A=(a,)striangular and normal, then a necessary and
sufficient condition for equality to be attainable in (7) throughout A, defined
by (56), with a sequence {s,} (sy#0) independent of m and n, is that there
should be real numbers a,,_,, (0 <m<n<oo)and p, (1> 0) such that

b, (m, n)=€“nn=Pwlk (m, n)] (0<p<m) (57)

for all (m,n)in A, where o, ,, is independent of u and p, is independent of
m and n, b, (m, n) being defined by (9).

Proof. There will be equality in (7) throughout A, with a given
sequence {s,}, if and only if nothing is thrown away at the steps
corresponding to (*) and (**) in the proof of Theorem 1.
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If ¢, is the transform of s, given by (3), necessary and sufficient
conditions are

i bt =eionm|h, t’
(.? e (0<p<m) (58)
(ii) |h,t) |=M,|k,|R,

for all (m, n) in A, where o,, ,, is independent of , and if ;' #0,

M, = max [t,/|/R,>0.
ousm
Necessity. Assume that there is a sequence {s,) (s,’#0) giving
equality in (7) throughout A.
First suppose that (a) for each p (u>0) there is a pair m=m,, n=mn, in
A, such that h,(m,, n,)#0. Then, if we put m=m,, n=n,in (ii) and cancel
the non-zero factor, we see that (ii) implies

(i) | =M R, (p>0).
Since m,, >, (ii)’ implies
(ii)” [t/ |=M,R, (uz0).

Since ¢,” is independent of m and n, it follows from (ii)”" that there are
numbers p, such that

t,=M,emR, (uz0). (59)

Substituting from (59) into (i), we obtain

kb M, ern R, ,=ennlh,|M,R, (0<p<m<n<oo),

which is the equivalent to (57), since M, >0, R,>0.

Thus (57) is necessary when (a) holds.

Next suppose that condition (a) does not hold, and let G be the set of
values of p for which %,(m, n)=0 throughout A,. Then for every u not
in @, the same argument shows that there must be numbers ¢, , and
p, satisfying (57). But for every p in G, conditions (i), (i) and (57) are
automatically satisfied. Thus (57) is necessary when condition (a) does
not hold.

Sufficiency. If (57) holds, then (i) and (ii) are satisfied, with
M,,=M>0, when t,'=Me*e¢irx B, and hence there is equality in (7)
throughout A when s,’= Ck, (C#0), with £, as in (13).

Thus (57) is sufficient, and the theorem is proved.

3.2. The class of sequences {s,} giving equality in (7) throughout A
is most easily determined in the case where A, (m, n)#0 (0 <p<m) for all
(m, n) in A. In the general case, where some of the % ,(m, n) may vanish,
we must analyse the distribution of the non-vanishing 4 ,(m, ).
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We shall say that two non-negative integers u,, u, are linked, if there
is a pair (m’, n') in A, ~A , such that b, (m’, n')#0 and h, (m’, n') #0. If
a non-negative integer u is not linked to any other non-negative integer
we shall call u isolated.

We shall say that a set £ of non-negative integers is connected, if for
every pair u,, u, in E there is a finite chain of linked pairs (ug, 1), (15 #2),

covy (Ux—1 p) such thab po=p,, py=ps
The simplest case from this point of view is that in which the set p >0

is connected. In the next theorem we determine in this case the class of
{s,}, with s,#0, giving equality in (7) throughout A.

TuEOREM 5. If condition (57) holds, and the set >0 is connected
(in the sense defined), then there is equality in (7) throughout A, with sy#0,
if and only if

s,=Ck, (v=0), (60)

where C is a non-zero constant and
ky=”§0bmelﬂuRﬂ (v=0), (61)

(b,,) being the inverse of (a,,).

If (57) holds and the set u> 0 is not connected, then conditions (60)—(61)
are sufficient for equality in (7) throughout A.

Proof. Let {s,} be an arbitrary sequence, with s,# 0, and write
tﬂ=em[tﬂ] (n>0), (62)

where ¢, is given by (3) and 8, is real. Then {s,} will give equality in (7)
throughout A if and only if

(i)a hﬂeieﬂltﬂl =6i¢n.mlh
(ii), lh,t,|=M,R, |}

for all (m,n) in A, where M, >0 and ¢, ,, is real and independent of p.

t
& O<u<m)

ul

Necessity. Suppose that there is equality in (7) throughout A with ¢,
given by (62).

Since (57) holds, it follows from (i), and (ii),, as in the proof of Theorem
4, that

e"n n=00) b, (m, 0)| = €¥Onn=PP | b, (m, n)| (OSp<M) (63)

for all (mm, ») in A.

Now let u,, us be an arbitrary pair of non-negative integers. Since
the set u > 0 is connected, there is a finite chain of linked pairs (u;_y, u;)
(j=1,2,...,N), with py=p,, py=ps and pairs (m;,n,) in A, A,
such that &, (m;, n,)#0, b, (m;, n;)#0 (j=1,2, ..., N).
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Substituting m=m;, n=n,; into (63), with pu=pu, ; and p=p,, and
eliminating the terms involving (m;, n,), we find that

exp{i(0,,,—p,.)}=exp{i(0,—p,)} (i=1,2,...,N), (64)
and hence that
exp{i(0,,— Py, )t =0xp{i(6,,—pu,)} (65)
Since p,, u, are arbitrary non-negative integers, this proves that
GO =e (4> 0), (66)

where A is real and independent of x, m and «.
Also, from (ii),, M, =M, =M, (j=1,2, ..., N), so that M/,a=M,,ﬁ.
Thus M”:M>O, and

t,=Me*reirn B,=Ce'*r R, (u20), (67)
where C is a non-zero constant, and hence {s,} satisfies (60)-(61).

Sufficiency. We have already shown that the condition ¢,=Ce*+ R,
which is equivalent to (60)-(61), is sufficient.
This completes the proof.

Remark. In the general case, the set u>0 will be composed of a
sequence {D,} of sets, where each D, is either a connected set or an isolated
integer. Also the union of the intervals v<u<m,, where A, (m,, n,)#0,
is a set of distinct intervals which, together with the point-intervals formed
by the remaining isolated integers, is a sequence {[,} of intervals
0, S U <0y, Each D, is covered by some I, and in the case of equality
et is constant in each D;, while M, is constant in each I, and M, is
non-decreasing. Thus there will be equality in (7) throughout A, with
8,#0, if and only if (1) ¢,=M, etiere R, for peD,;<cI;, whenever D,
is a connected set, and (II) |¢,|< M, R, whenever u is an isolated
integer such that u#0 and pel,, where |t)|=MRy=|s,|>0.

4. Inhis later paper [22], Zeller gave two theorems (Satz 1 and Satz 2)
which would not normally have been suggested by the results of the
present paper.

Zeller’s Satz 2 completes the theorem of Wilansky and Zeller, mentioned
above in §2.5, in a necessary and sufficient form. It may be modified
so as to complete Theorem 2 similarly.

Zeller assumed in Satz 2 that the matrix 4 is triangular and normal
and has non-negative elements, but he need only have chosen the sign
of the diagonal elements. By omitting the redundant hypothesis, we are
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led to a similar completion of Theorem 3. The converse results may be
combined into the following single theorem, in which either the upper
signs or the lower signs may be taken.

THEOREM 6. If A=(a,) s triangular and normal, and a,,>0, B,>0
for0€u<n< N, and if ' o

1 m
y(m, n)= 7 >a,rz0 (0<m<n<gN), (68)
n v=0
where .
=+ Xb,R, (0<v<N), (69)
pu=0

(b,.) being the inverse of (a,,), and if the inequality

1 w
= Eans | <ymm) max | o $a,, (70)
n v=0 O<usm p v=0 .

holds for all m, n such that 0<m<n<N, and for all finite sequences
{8,} (0O<v<N), then

{20 b <O 0< <N 71
tologr bulsy O<v<us), (71)

and y(m, n) is the best possible factor in (70).

Proof. Since G(m, n), given by (8)-(9), is the best-possible factor
in (7), the truth of (70) in the cases stated implies that

G(m, n)<ylm,n) (0<m<ngN) (72)
and hence, by (8), (9), (68) and (69), that
1

S B, m| B, < £ —— 324, 3 by, R 3, b,(m, n) B,
Rn #=0 B, =0 "= R, =0
This implies that
=0
b, (m, n) <0 (0gusm<ngN). (73)
With the upper signs, (73) implies that
h(n—1,n)=~a,,b,,20 (0<u<n<XN). (74)

Since a,, >0, (74) implies that ,,<0 for 0Su<n< XN, and hence
also that a,w/O forOspu<n< A,
With the lower signs, (73) implies that

hy(m,n)=2a,,,0,,<0 (0<m<n<gN). (75)

‘Since b,,,, >0, (75) implies that a,,,<0 for 0<Km<n< N, and hence
also b, >0for0O<m<n<N.
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Thus the relations (71) hold, with a,,=1/b,,>0, and hence it follows
from Theorems 2 and 3, (35) and (52), that

y(m, n)=G(m, n). (76)

This completes the proof.
Zeller’s Satz 1 may be restated in the form

Tusorem 7. If the matrix A= (a,,) is triangular and normal, then a
necessary and suffictent condition for the inequality (1) to hold, with K =1,
Jor all m, n such that 0 <m <n< N, and all finite sequences {s,} (0<v<N),
is that

n—1
3 (bn/,[Rﬂsibnn[Rn (0<n<N), (77)
#=0

where B = (b,,) is the inverse of A.
Proof. The condition is necessary, since
b,(n—1,n)= ~—annbnﬂ= ~byu[bnns

and hence (77) is equivalent to

Gn—1,n)= — " b, (n—1, )| R

<1 (0<n<gN).
) ( )

u

The sufficiency will now follow from ¥
Lemma. If Grn—1,n)< for 1<n< N, then

G0, n) < G(1, n)<... < G(n—1,n)

for 2<n<N.

Let m have any value such that 0<m<n—~1<N-—1, Then

m
Z Dpp bvp

=g i

R,G(m,m)= 3 R,

=0

m+1

m ! m
< Z R,u‘ 2 anvbv,u ll +lan,m+1! Z lbm+l,p‘R,u
#=0 v=p ; £=0

m m+l

<2 -R,u‘ 2 anvbvp|+

#=0 v=p

[ S | § _—

m+1
=% Rﬂ

=0

m+1
S, @by, | = R, G+ 1, ).
v=p

!

This proves the lemma, and hence the theorem.

t Zeller’s argument proceeded from the identity (6), which we have not used.
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