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AN INEQUALITY FOR SEQUENCE TRANSFORMATIONS

L. S. BOSANQUET

1.1. Let A = (a^) be a normal triangular matrix, i.e., one for which

Inequalities of the following form have entered naturally into analysis:

R,n »=0
max

1
»=0

(1)

where (i) 0^m<n, (ii) R/l>0 (jOO), (iii) -K" is a constant, depending
on the matrix A and the sequence {R^}, but independent of m, w and the
finite sequence {sy}.

The factor 1/2?̂  is convenient for classification, but we may omit it,
by replacing a^JR^, by c^, so that the inequality becomes

m
S cnvsv

v=0
max (2)

The inequalities (1) and (2) only hold for restricted classes of matrices.
For example, if \cnv\->oo as n->oo, (2) breaks down for large n. Again,
if cnv->0, (2) gives no information for large n.

But these cases remain significant if we consider instead inequalities
with the constant K replaced by a factor G = G(m,n), independent of
{«„}, but depending on m and n. In the present paper I begin by obtaining
an inequality of this kind, for an arbitrary normal triangular matrix with
complex elements. The factor G is best-possible, in the sense that equality
is attained with a suitable {sr}, depending on m and n. In §31 give necessary
and sufficient conditions for equality to be attained with a sequence {$„}
which is independent of m and n.

For an important class of matrices with positive elements, the same
inequality has been obtained by Wilansky and Zeller [19], and discussed
further by Zeller [22]. An account of earlier results is given in §2, in
conjunction with examples. Zeller's later results are discussed in §4.

1.2. If
(3)

then
,= 2 (4)

where B= (bflv) is the inverse of the normal triangular matrix A = («„„).
The matrix B is also triangular and normal. From the identities

[MATHEMATIKA 13 (1966), 26-41]
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AN INEQUALITY FOR SEQUENCE TRANSFORMATIONS

AB — BA = I, we have

and

We shall make frequent use of (3), (4) and (5).

27

(6)

THEOREM 1. If A = (a^) is a normal triangular matrix, with complex
elements, B = (b^) is its inverse, Rfl>0 and 0^m<n, then

1 m

R,
G max

Rfl v=0

for all finite sequences {sy} (v = 0, 1, ..., m), where

1 m
G G { ) £|^|

(7)

(8)

(9)

*„ = « - * # 0

, %), then there is equality in (7) if and only if

(10)

(11)

where C is an arbitrary constant, and hv = kv(m, n) satisfies the equation^

v=Q

i.e.
K= S f/l ^ /A

(12)

(13)

If h^ — Q for some fj, (and the corresponding p^ is chosen arbitrarily), the
conditions (11)-(13) are sufficient for equality.

In all cases, the factor G may be expressed in the form

0 = 2j anv "V
l>=0

(14)

Proof. Let m, n be given integers such that 0 ̂  m < n. WriteJ

m
>— S an

m

/i=0

f If C = 0, kv is arbitrary.
t Cf. Wilansky and Zeller [19] or Zeller [21; p. 43].
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28 L. S. BOSANQUET

where hfl is given by (9). Then

1 , 1 m

S IM./("/I

1 m M

where
r= max |* \\R

(*)

(**)

(15)

and G=G(m., n) is given by (8).
This establishes the inequality (7).
We next show that G(m, n) is best-possible, in the sense that there is a

finite sequence {s/} = {«/ (m, n)}, such that

Rn I i/=o
= G max (16)

Now equality is attained in (7) if and only if nothing is thrown away
at the steps (*) and (**). Thus there is equality in (7) if and only if

where 9 is real and independent of \i,

(ii) Ihpt,, =M\h/l\ Rh

where M is non-negative and independent of /A.

First suppose that hf ^ 0 (0 < fi < m). Then the conditions become

(i)'
(ii)'

for some real 9 and some M > 0, where p^ satisfies (10).
Conditions (i)' and (ii)' hold if and only if

(17)

for some constant C.
Thus there is equality in (7) if and only if

(18)

Now let kv be defined as so to satisfy (12)-(13). Then the conditions
for equality are satisfied if and only if (11) holds.

Next suppose that h^ = 0 for one or more /*. / / h^ = 0, where 0 ^ fi < m,
conditions (i) and (ii) are automatically satisfied for /* = //, and impose no
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AN INEQUALITY FOR SEQUENCE TRANSFORMATIONS 29

restriction on t^, except that j ^ ' | ^MR^ by (15). Hence the conditions
for equality are satisfied, in particular, when sv satisfies (11).

Finally, if we substitute sv' = hv into (16) ,we obtain

1 m

Rn v=O
= G max = G.

and (CK/x<m). (19)

Thus G is always expressible in the form (14).
This completes the proof of the theorem.

Remarks. (1) More precisely, there is equality in (7) if and only if

(I) t^Ce^'R,, (h^O)

(II) |^ ^ICji^ (^ = 0)

In particular, if h^= 0 for all fx, (0 ̂ /x < m), then C is indeterminate, and
there is always equality in (7), both sides being zero. In this case ani, = 0
for 0 < v ^ m.

(2) If h/(< = 0, and tf; = T, then the contribution of t^ to sv = v fr^ ^

is bvl; T,'\iv^ /JL', and zero if v < fi'. Hence its contribution to tn< m = S anv s»

is

Thus the arbitrary ^- contributes nothing to the left-hand side of the
inequality. And it contributes nothing to the right-hand side provided
\T\^M'R^, where M' = max |t/t\/R/t.

2.1. The inequality
m

where 0<S<l,0<m<w and

max
v=0

I<J-I , (20)

(21)

was first stated by Jacob [8], and later found independently by myself
[2], [3]. The proof in [2] is valid for complex sv.

Jacob said that the inequality was " already known ", and referred to
Lemma 7 of Hardy and Riesz [7], which is Riesz's inequality (or mean
value theorem) for typical means:

r
Jo

{x-u)s~x A(u)du max

where 0<S<l ,0<£< x and

AB<«

(v-

... and

(u)du (22}

(23)
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30 L. S. BOSANQTJET

Riesz's inequality is not the same as Jacob's, even when \n = n, but an
examination of the proof in [7] shows that (20) may be established by a
similar argument, with Abel's lemma playing the role of the second mean
value theorem.

2.2. In a more general form of Riesz's inequality, A(u) is replaced
by a function (f>(u) e L(0, f) and the maximum by the essential upper bound.

The proofs of the inequality [13], [7], [14], [16], show that a factor

i—— f (x - u)1-1 u-» du < 1 (24)
( 1 — oj Jo

may be inserted on the right-hand side. Moreover, this factor is best-
possible. For equality is attained if we put <j>(u) = Cu~s.

I have obtained some extensions of Riesz's inequality in an earlier
investigation not yet presented for publication.

2.3. The general inequality (2) was introduced by Jurkat and
Peyerimhoff [10].

Peyerimhoff [12] had shown that, if the normal triangular matrix
C= (ĉ ,,) defines a regular sequence-to-sequence transformation, then the
space Co, of sequences s = {sv} whose transforms t = {t^} are null sequences,
will have the property f that every sequence s = {sv} in Co is the weak limit
of the sequence!

«*>=(*o.«i 5 f c ,0 ,0 , . . . ) , (25)

if and only if

m
2J

 c»y < if sup (26)

whenever 0 ^ m < n < oo and s e Go.
Jurkat and Peyerimhoff showed that (26) holds for allse Ca if and only

if the inequality (2) holds for all finite sequences (s0, sv ..., sm) and all
m,n such that 0<m<ra<oo. Their argument is valid for any normal
triangular matrix and with Co replaced by any set G containing all the
sequences s whose transforms are terminating sequences

«W =(*„,*!, ...,tm,0,0, ...). (27)

A number of other properties have also been shown to be equivalent
to (26), and hence also to (2). For an account of these, see Wilansky [18]
and the references there to [4], [11], [17], [19], [20], [21].

f Schwache Abschnittakonvergenz (SAK); weak sectional convergence.
% i.e. F(s)=\im F(sm) for every linear functional F(s) denned on O0.
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AN INEQUALITY FOR SEQUENCE TRANSFORMATIONS 31

2.4. Jurkat and Peyerimhoff [10] found sufficient conditions for the
inequality (2) (or (1) with R^ = 1) to hold. Their conditions were

(i) a,,v>0 (O^v^u^n), (ii) —^i-^—ft_^ / —\ ^ <g7f, (28)

for 0 ^ Vj ^ v2 ^ jLij < /u.2 ^ re.

If condition (iii) is omitted and a is replaced by cfiv = a^/a^, then c^
satisfies the same conditions, with K— 1, and hence, as their proof shows,

1 />
max S V 5 - > (29)

for 0 < TO ̂  w, which is an inequality of the form (1), with Rfl = a^. Their
proof, which holds for real sv, is an extension of that in [3].

2.5. Wilansky and Zeller [19] (see Zeller [21, p. 43]) obtained
the inequality (1), with 2?̂ ,= 1, under the conditions

(30)

Their proof, which is valid for complex sv, shows that the constant
K = 1 may be replaced by the factor

m
G= S h , where h >0, (31)

Â  being given by (9). This implies, since Bv > 0, that
m n n n

0= 2anpB^ -LanvBp= 2 S «»»&„„= 1, (32)
v=0 v=0 /*=0 c=/<

and that equality is attained in (7), with Blt=l, when£/(= G, i.e., sv = GBV.
They also observed that Jurkat and Peyerimhoff's criterion, with

K= 1, is included in theirs. This is a generalisation of Kaluza's theorem;
c/. Hardy [6; Theorem 22]. Later Zeller [22] remarked that the conditions
6W > 0 (/A ^ 0), b^ < 0 (0 ^ v < jtt) themselves imply that «„„ > 0 (0 < v < /u.),
so that the hypothesis on a^ may be omitted. This is a generalisation of
a sort of converse of Kaluza's theorem; cf. Dienes [5], f

These results may be incorporated in the following theorem, which is a
corollary of Theorem 1. The hypotheses of Theorem 2 are satisfied, in
particular, under conditions (28), with (iii) omitted.

f Dr. Vermes showed me that if B is n x n and triangular, with diagonal matrix D,
« - l

then B-1 = 2 D-r-^D—B)", since (D-B)" = 0. See also Tatchell [15]. Professor
* = 0

Peyerimhoff gave me two further references: (1) G. de Rham, Publ. Jnst. Math. Belgrade,
4 (1952), 133—134, (2) W. B. Jurkat , Proc. International Congress of Mathematicians
Amsterdam, 2 (1954), 126.

C
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32 L. S. BOSANQUET

THEOREM 2. If B = (b^) is the inverse of a normal triangular matrix
A = (a^), and if

^ ^ (33)

and R/i>0 (0^/x^n), then a^>0 (O^v^fi^n) and, ifO^m<n,

hpX) (OsS^ra), (34)

where h/t is given by (9). Further the inequality (7) holds, with

0 =
t>=0

(35)

where ky satisfies

i.e., „
M ^ (37)

/«=O

Proof. Since conditions (33) imply that a^^O (0<v^/x^%), we
have, as in Wilansky and Zeller's theorem,

Thus

and (13), with ^ = 0, becomes (37) for 0^ v^m. Hence (35) follows from
(14), together with (36) for jj, = n.

This proves the theorem.
In particular, we have

COROLLARY 1. If k^Q (O^v^n), then

If B — 1, this is Wilansky and Zeller's theorem.

COROLLARY 2. / / kv ̂  0 (0 ̂  v ̂  n) and anv- kj > 0 for some v such that
m<v ^n, then 0<\.

COROLLARY 3. If kv = d (m<v^n),then 0—1.

COROLLARY 4. If kv^0 (m<v^n) and anv>kv-<§ for some v such
that m<v ^n, then G>1.

In Corollaries 1-2,
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In Corollaries 3-4,

>>=0

Examples. (1) If 0 < S < 1, a > — 1, then

1 m

~r~z~ Zi An_v sv

0 max
AS ,f0

for 0 < m < n, where

G = la-S

and equality is attained in (38) if and only if

Further,

Here 6̂ ,, = ^J*"1, Rp = ̂ 4 / > 0, hk > 0 and

(« = S-1)

2
/»=0

Hence fc0 = 1 and, for v ^ 1,

33

(38)

(39)

(40)

(41)

(42)

^ =0 (a-8=-l) (43)

(2) An example of Corollary 3 is the extension of the inequality (29)
to complex sv.

(3) Let A— (anv) be the Hausdorff matrix (fy, fx), where
i.e.,

(44)

where AwA = ux —
Then, if /x0 > 0 and AP(1/^,,) ^ 0 (K ^ 0, p ^ 1), the matrix A satisfies the

hypotheses of Theorem 2. If R = 1, then

(45)

and equality is attained in (7) when sv = C (0 < v < m).

f The case a > S — 1, with O replaced by K — 1, has been given by Andersen [1 ].
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34 L. S. BOSANQTJBT

We may take

(i) f t l ( = l / ^ 8 j = 8 j V ( l - O » - 1 * , (46)

where 0 < 8 < 1. Then A is the Cesaro matrix of order 8: aflv = A^zl

(ii) ^=(v+l)-»=-J4rfVflog(l/0}'-1«&,
1 (°) Jo

where 0 < 8 < 1. Then A is the Holder matrix of order 8.
In this case, if ^ = 1, we obtain

21 (n)A.n-"{(v+l)-s}sv <Gmax 2 (M ) &~v {(v+l)-*}«J, (48)

r e m /n\
0=21 A^fr+l)i. (49)

Here /^ > 0 (0 <p. ̂  m) and {AJ = H.-&{\)~ 1. Hence there is equality
in (48) if and only if 8V = C (0 < v ^ m).

A1SOC(TO, %)<©(»- l ,« )< i? n = 1 .
Zeller [20] has stated that the inequality for Hslder means of order 8,

0 < 8 < 1, with K = 1 in place of 0, was obtained by Peyerimhoff [12]. But
the inequality does not occur in Peyerimhoff's paper.

Jacob [9] has given an inequality for the integral analogue of Holder
means of order S, 0 < 8 < 1.

2.6. The next simplest case of Theorem 1 is the following result.

THEOREM 3. If A = {a^), R/l>0 and

ajl/t>0 (0</LISS»), V < 0 (°^"<M^w)> (50)

then b^^O (0< v^y.<n) and, if0^m<n,

h^0 (0</x<m), (51)

where hfl is given by (9). Further, the inequality (7) holds, with

G
m I

>>=0 /
kp (52)

kv= — Jubv/lRfi ( 0 < v < n ) , (53)

and afeof

<?(»», n) < G ( n - 1 , » ) = D ^ n£bn/lRM. (54)

I Of. §4, Theorem 7.
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AN INEQUALITY FOB SEQUENCE TBANSFOBMATIONS 35

Proof. Since (50) implies that b ^ 0 (0 ̂  v < [L < n), we have

v=/t

Hence h =e~ni\h \, so that (13) becomes (53) for 0<v<m, and (52)
follows as (35) does in Theorem 2. Finally, (54) follows, since anvkp^0
(0 ̂  v < n) and

h/t(n-l,n)=-annbn/l = -bn/l/bnn^O (O^fi<n).

Example. aia = A~^-1 (0< 17 < 1). B/i = A/l<* (oc> - 1). Here b^AyX

k,, = A,?+i and

G(m, n) =
1

(55)

Clearly G(m, n) is bounded if m<6n (0<6< 1), but

which is unbounded.

3.1. In Theorems 2 and 3, and the examples on them, the numbers kv

were independent of m and n. In other words, if the hypotheses are given
for all m, n such that 0^m<«.<oo, then the sequences {«„}= {Ckjj give
equality in (7) for all m and n such that 0 < m < n < 00.

In this section we first obtain necessary and sufficient conditions for a
matrix (a^) to be such that equality can be attained in (7) throughout

A: the set of all pairs (m, n) such that 0 < m < n < 00, (56)

with one and the same sequence {«„}, where so'^Q. If s,, = 0 (O
h^m, n) is unrestricted for 0 </x. ^p.

For /x ̂  0, we write A^ for the set of pairs (m, n) such that p < m < n < 00.

THEOREM 4. If A = (a^) is triangular and normal, then a necessary and
sufficient condition for equality to be attainable in (7) throughout A, defined
by (56), wi<A a sequence {«„} (S0T^0) independent of m and n, is that there
should be real numbers <Tn> m (0 ̂  m < n< 00) and p^ (/u, > 0) swcA that

h^m, n) = e^n,m-p^h^m, n)\ (O^fi^m) (57)

for all (m, n) in A, where anm is independent of /x and p^ is independent of
m and n, h (m, n) being defined by (9).

Proof. There will be equality in (7) throughout A, with a given
sequence {«„}, if and only if nothing is thrown away at the steps
corresponding to (*) and (**) in the proof of Theorem 1.
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36 L. S. BOSANQUET

If tp is the transform of «„', given by (3), necessary and sufficient
conditions are

„ „ , . . . . ^

for all (m, n) in A, where anm is independent of ft, and if s0' ^ 0,

* '|/JR > 0 .

Necessity. Assume that there is a sequence {«/) (so'/O) giving
equality in (7) throughout A.

First suppose that (a) for each p, (/n > 0) iAere is a 2>cw m = m^, « = n^ in
A^ swcA that h^rrip, raj ̂  0. Then, if we put m = m^, n = n/lin (ii) and cancel
the non-zero factor, we see that (ii) implies

Since m^ ̂  t̂, (ii)' implies

Since ^A' is independent of m and w, it follows from (ii)" that there are
numbers p^ such that

t^M^R^ O*>0). (59)

Substituting from (59) into (i), we obtain

which is the equivalent to (57), since M^>0, R/l>0.
Thus (57) is necessary when (a) holds.
Next suppose that condition (a) does not hold, and let O be the set of

values of /x for which hp(m, n) = 0 throughout A .̂ Then for every fi not
in G, the same argument shows that there must be numbers anm and
pfl satisfying (57). But for every fj. in O, conditions (i), (ii) and (57) are
automatically satisfied. Thus (57) is necessary when condition (a) does
not hold.

Sufficiency. If (57) holds, then (i) and (ii) are satisfied, with
Mm = M>0, when t/l' = Meuei''f R^, and hence there is equality in (7)
throughout A when sj = Ckv (C ̂  0), with lev as in (13).

Thus (57) is sufficient, and the theorem is proved.

3.2. The class of sequences {sp} giving equality in (7) throughout A
is most easily determined in the case where h^m, n) =£ 0 (0 < p < m) for all
(m, n) in A. In the general case, where some of the h^m, n) may vanish,
we must analyse the distribution of the non-vanishing h Am, n).
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We shall say that two non-negative integers fx.v /x2 are linked, if there
is a pair (TO', n') in A^r^A^ such that h/ti(m', n') # 0 and h^m', ri) ^ 0. If
a non-negative integer /x is not linked to any other non-negative integer
we shall call fj. isolated.

We shall say that a set E of non-negative integers is connected, if for
every pair p,a, /JL^ in E there is a finite chain of linked pairs (/x0, /x1), (^1; /x2)>

•••> (/*iv-i> MAO s u c n t n a t Mo = /*a» MA- = /*/?•

The simplest case from this point of view is that in which the set /x ^ 0
is connected. In the next theorem we determine in this case the class of
{sv}, with <sO7̂ O, giving equality in (7) throughout A.

THEOEEM 5. / / condition (57) holds, and the set /x^O is connected
(in the sense defined), then there is equality in (7) throughout A, with s0 ^ 0,
if and only if

), (60)

where C is a non-zero constant and

*„= SV^.8, (0 0), (61)

(bp) being the inverse of (aflV).

If (57) holds and the set /x^ 0 is not connected, then conditions (60)-(61)
are sufficient for equality in (7) throughout A.

Proof. Let {sy} be an arbitrary sequence, with s0 ̂  0, and write

*„ = «"" I*, I (/^°)> (62)
where t^ is given by (3) and 8^ is real. Then {«„} will give equality in (7)
throughout A if and only if

for all (m, n) in A, where Mm>0 and </>n>m is real and independent of fi.

Necessity. Suppose that there is equality in (7) throughout A with t^
given by (62).

Since (57) holds, it follows from (i)a and (ii)a, as in the proof of Theorem
4, that

e«A..«.-V)|h^m, n)\ = e^n,m-/>^>|h/t(m, n)\ (0^/*<m) (63)

for all (TO, W) in A.
Now let /j,a, pp be an arbitrary pair of non-negative integers. Since

the set /J.^ 0 is connected, there is a finite chain of linked pairs (/Xj_1; fi})
(j = l,2, ...,N), with fio = (i.a, fiN=nfi, and pairs {m},nt) in AW

such that h^rrij, n})<£0, h^m,, n})^0 (j= 1, 2, ..., 2V).
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Substituting rn = mi, n = nj into (63), with fjL = fij_1 and fi = fij, and
eliminating the terms involving (m,, w3), we find that

^ / ^.-p/I.)} (j= 1, 2, ..., iV), (64)

and hence that

expl^^-^n^expli^-^)}. (65)

Since ju.a, ̂  are arbitrary non-negative integers, this proves that

ei(9,,-^) = etA ( ^ 0 ) , (66)

where A is real and independent of /x, m and n.
Also, from (ii)a, M/tj_1 = Mmj = M/lj, (j= 1, 2, ..., iV), so that M^M^.

Thus M^M >0, and

^ = i f eiA ev/' i?^ = Ce*^ £/t (/x ^ 0), (67)

where C is a non-zero constant, and hence {sj satisfies (60)-(61).

Sufficiency. We have already shown that the condition t^ = Ce*^ 22̂ ,
which is equivalent to (60)-(61), is sufficient.

This completes the proof.

Remark. In the general case, the set /n ^ 0 will be composed of a
sequence {D3} of sets, where each Z)3 is either a connected set or an isolated
integer. Also the union of the intervals v^/n^m^,, where hv(mv, n^^O,
is a set of distinct intervals which, together with the point-intervals formed
by the remaining isolated integers, is a sequence {Ik} of intervals
ak < n < ak+1. Each Bi is covered by some Ik, and in the case of equality
e a is constant in each Djt while M/t is constant in each I,, and Jlf is
non-decreasing. Thus there will be equality in (7) throughout A, with
so^O, if and only if (I) t^ = Mne

iXieiPij-R^ for (ieDj^Ik, whenever Z>3-
is a comiected set, and (II) \t/l\^MnR/i whenever /n is an isolated
integer such that /u.^0 and /xe/fc, where |io| = Jf0i?0 = |s0 |>0.

4. In his later paper [22], Zeller gave two theorems (Satz 1 and Satz 2)
which would not normally have been suggested by the results of the
present paper.

Zeller's Satz 2 completes the theorem of Wilansky and Zeller, mentioned
above in §2.5, in a necessary and sufficient form. It may be modified
so as to complete Theorem 2 similarly.

Zeller assumed in Satz 2 that the matrix A is triangular and normal
and has non-negative elements, but he need only have chosen the sign
of the diagonal elements. By omitting the redundant hypothesis, we are
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led to a similar completion of Theorem 3. The converse results may be
combined into the following single theorem, in which either the upper
signs or the lower signs may be taken.

THEOREM 6. / / A = (a/w) is triangular and normal, and a w > 0, R(l>0
for 0^/j.^n^N, and if

1 m

where
(O^v^N),

(bpV) being the inverse of (a/lv), and if the inequality

1 m

Rn v=0
max

holds for all m, n such that
{«„} (0 < v < N), then

(68)

(69)

D ^-,,,-, (™)
r

, and for all finite sequences

and y(m, n) is the best possible factor in (70).

Proof. Since G(m, n), given by (8)-(9), is the best-possible factor
in (7), the truth of (70) in the cases stated implies that

and hence, by (8), (9), (68) and (69), that

\ m
2\h(m,

This implies that

With the upper signs, (73) implies that

h/l(n-l,n)=-annbn/l>0 (0</j

Since ann>0, (74) implies that bn/i^0 for
also that an/l ^ 0 for 0 ^ n < n < N.

With the lower signs, (73) implies that

Since bmm>0, (75) implies that anm^0 for
also bnm > 0 for 0 < m < n < N.

\ m

(72)

(73)

(74)

and hence

(75)

and hence
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Thus the relations (71) hold, with afl/l= ljb/l/l>0, and hence it follows
from Theorems 2 and 3, (35) and (52), that

y(m, n) = G(m, n).

This completes the proof.
Zeller's Satz 1 may be restated in the form

(76)

THEOREM 7. / / the matrix A = (&„„) is triangular and normal, then a
necessary and sufficient condition for the inequality (1) to hold, with K=l,
for all m, n such that 0^m<n^N, and all finite sequences {«,,} (0^ v<N),
is that

(77)

where B — (b^) is the inverse of A.

Proof. The condition is necessary, since

h^n- l,n)= -annbn/l= -bnjbnn,

and hence (77) is equivalent to

The sufficiency will now follow from f

LEMMA. If G(n— 1, w)< I for 1 ^n^N, then

G(0, n) < G{\, w)< ... < G(n~ 1, n)

Let m have any value such that 0^m<n— l^N— 1. Then

m

RnG(m,n)= 2 R

m+1

m

Sv
m+1

S an

m+1

m+1

A,

A,

+

=

an, m+ll S

m+1 ^m+

(?(m +1

^m+1

L,m+1

= S

This proves the lemma, and hence the theorem.

f Zeller's argument proceeded from the identity (6), which we have not used.
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