
THE REVIEW OF SYMBOLIC LOGIC

Volume 13, Number 1, March 2020

MODULARITY IN MATHEMATICS

JEREMY AVIGAD

Department of Philosophy, Carnegie Mellon University

Abstract. In a wide range of fields, the word “modular” is used to describe complex systems that
can be decomposed into smaller systems with limited interactions between them. This essay argues
that mathematical knowledge can fruitfully be understood as having a modular structure and explores
the ways in which modularity in mathematics is epistemically advantageous.

§1. Introduction. Roughly speaking, a complex system is said to be modular when
it can be decomposed into smaller systems, or components, with limited or controlled in-
teractions between them. The term “modular” is now used in a number of fields, including
biology [14], computer hardware and software design [9, 19, 31, 32, 41], business admin-
istration [37], and architecture, as well as research at the intersection of neurobiology,
cognitive science, psychology, and philosophy of mind [10, 15, 22, 34].

The thesis of this essay is that mathematical knowledge is structured in modular ways.
Part of the project is descriptive, in the sense that I will offer a certain perspective on the
constituents of mathematical knowledge and clarify the ways in which they can be said
to be modular. But there is also a normative component, in that I also aim to explain why
this should be the case, by highlighting some of the epistemological benefits that such a
modular structuring confers.

The concept of modularity is often applied to the study of natural systems, sometimes
with an eye toward proving an explanation as to why these systems have evolved the
way they have. But the concept is equally often used in discussions of manufactured
systems, where it is often portrayed as an explicit design goal. Modularity is generally
said to improve the comprehensibility of such systems and lead to greater robustness,
flexibility, efficiency, and economy. Here we will explore the extent to which the design of
mathematical resources can be understood in such terms.

In a branch of computer science known as formal verification, one can now use compu-
tational proof assistants to verify the correctness of substantial mathematical theorems [6].
This affords a two-step process for translating the concept of modularity from software
engineering to mathematics. Insofar as the formal proof texts that serve as input to com-
putational proof assistants are like computer programs, it makes as much sense to talk
about modularity in formal mathematics as it does to talk about modularity in software
design. And insofar as these formal proof texts illustrate important features of informal
mathematical texts, it makes sense to talk about modularity in informal mathematics as
well.

This strategy does not presuppose strong assumptions about the relationship between
formal and informal reasoning. It can be seen, rather, as a heuristic means of making

Received: September 23, 2017.
2010 Mathematics Subject Classification: 00A30, 00A35, 03A05.
Key words and phrases: modularity, philosophy of mathematics, mathematical practice.

c© Association for Symbolic Logic, 2018

47 doi:10.1017/S1755020317000387

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

48 JEREMY AVIGAD

sense of the phenomena. Even if there were no formal languages or computational proof
assistants, mathematical knowledge would still be modularly structured, but the availability
of formal proof languages and their similarities to programming languages provide us with
ready-made conceptual tools to begin to understand how and why this is so.

§2 lays the groundwork by introducing a general framework for thinking about mathe-
matics and its goals. §3 analyzes the way that modularity is understood in various sciences,
with a focus on computer science, which is closest to our present concerns. §4 transports
notions of modularity from computer science to mathematics. §5 considers examples that
illustrate some of the ways that modularity plays out in everyday mathematics. Finally, §6
suggests directions for future research and sums up the main conclusions.

§2. Mathematics from a design standpoint.

2.1. Mathematical resources. Let us start with the question as to what mathematics
is, and, more to the point, what sorts of objects can bear the predicate “modular.” In
the approach we will adopt here, we will think of mathematics as a shared linguistic
practice so that the objects of evaluation are things like definitions, theorems, proofs,
problems, conjectures, questions, theories, and so on. These are all things that can be
written down, and, indeed, things that are written down, constituting the mathematical
literature. In modern logic, such objects are viewed as pieces of syntax. The way we
will use the notions here will perhaps admit some degree of abstraction, factoring out the
idiosyncrasies of a particular language or choice of expression. But if we are not dealing
with raw syntax, we are dealing with something pretty close to it. Below I will try to spell
out the sense in which a proof or a theory can be said to be modular, as well as the sense
in which definitions and lemmas support modularity.

I have argued elsewhere, however, that limiting attention to such syntactic entities is too
restrictive [3–5]. In order to address important epistemological issues, we need to make
sense of more dynamic components of our understanding: things like methods, concepts,
heuristics, and intuitions, which give rise to the abilities, or capacities, that we take to be
constitutive of mathematical thought. The problem is that we do not yet have good ways
of talking about these things, and so, for the most part, I will focus on the syntactic entities
enumerated in the last paragraph. I expect that when we do have better means of thinking
of mathematical knowledge in the broader sense, we will find that methods and concepts
have a modular structure that is supported by the modularity of the syntactic entities. In
any case, starting with the syntactic entities cannot hurt.

Any normative evaluation of mathematical resources necessarily presupposes some un-
derstanding of what it is we want them to do. It is generally held that mathematics is a
means of getting us to the truth. This intuition that can be cashed out in semantic terms,
which is to say, doing mathematics means trying to discover statements that are true in
virtue of standing in an appropriate relation to the mathematical objects they refer to, or
in epistemic terms, which is to say, doing mathematics means justifying one’s claims in
mathematically appropriate ways. Either viewpoint is consistent with the project set forth
here, and we will not be directly concerned with the foundational task of coming to terms
with the nature of mathematical justification and truth.

What is more important to the present work is the fact that simply getting to the truth
cannot be the whole story. Otherwise, glib epistemic advice such as “check every natural
number to ascertain the truth of the Goldbach conjecture” or “appeal to an omniscient and
beneficent deity for the answer” would solve most of our philosophical problems. Implicit
in all philosophical approaches to thinking about mathematics is the recognition that we

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 49

are finite beings with finite resources, facts that constrain the epistemological account. The
additional observation we need here is that not all finite burdens are equal: some burdens
are bigger than others, which is to say, some tasks require greater epistemic resources.

We should therefore think of mathematics as an attempt to get at the truth in an efficient
manner. We want our definitions and theories to be simple so that we can understand them
and deploy them more easily, and we want our proofs and solutions to be reasonably short,
so that we can devote our energy to even harder problems and more difficult proofs. If a
computation carried out on our fastest computer will not terminate before the sun burns
out, the possibility of carrying out that computation is close to us. A computation that gets
us the right answer in reasonable time is therefore to be valued over one that does not.

Developing such a view requires one to come to terms with ways of measuring simplicity
and complexity. (See the discussion of this in [5].) This essay makes a small start on doing
so, but without developing precise formal measures. For the moment, naïve intuitions on
the nature of simplicity will have to suffice. It seems uncontroversial to say that it is usually
easier to understand a short proof than a long one, at least given the right background
knowledge, it is easier to work through a proof that requires us to keep fewer pieces of
information in mind at any given stage, and it is easier to solve a problem when the context
suggests which steps will plausibly lead to a solution, rather than trying all paths blindly.
My goal here is to begin to explain how modularity can deliver such benefits.

To summarize, here we will view mathematics as a body of resources, both syntactic
entities like definitions, theorems, proofs, and theories, as well as less-easily-circumscribed
resources, such as concepts, methods, and heuristics. These resources are designed to
help us get to the truth (answer questions, make predictions, solve problems, and prove
theorems) simply and efficiently. Such resources are valuable insofar as they serve that
purpose well, and the goal here is to begin to understand some of the general principles
that ensure that they do.

2.2. Mathematics and design. The use of the word “designed” in the last paragraph
imposes a distinct way of thinking about mathematical resources, namely, as artifacts that
are developed with particular ends in mind. Indeed, Kenneth Manders [29,30] has used the
term “artifact” in such a way, and his choice of terminology is apt. Whenever we introduce
a new definition or notation, lay out a sequence of lemmas to prove a theorem, or introduce
a new algorithm or method of calculation, we contribute a new resource to the body of
mathematical knowledge. Whenever we reformulate a definition, generalize a lemma, or
rewrite a proof, we are, in effect, tinkering with those resources to augment their utility.

The exploration here is intended as a contribution to a theory of mathematical design—
that is, a design theory for mathematics, one that can help us understand the principles that
govern the effectiveness of a body of mathematical resources. Such theories are familiar
across the arts and sciences: we have theories of automotive engineering, theories of soft-
ware design, theories of architecture, and theories of graphic design and typesetting. They
help us understand what makes a good car, a good house, a good program, or a good poster,
and articulate guidelines that help ensure that these artifacts serve their purposes well. A
theory of mathematical design should do the same for mathematics.

Some comments may forestall misunderstanding. To start with, developing a theory of
mathematical design is not sharply distinct from doing mathematics. There are design deci-
sions implicit in every mathematical offering. Developing the philosophy of mathematics
as a design science is a matter of reflecting on the mathematical choices we make, and
then “going scientific”: articulating the goals with greater precision, modeling the space
of design options, and assessing their effects. The analogy to automotive engineering

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

50 JEREMY AVIGAD

may be helpful: while humans have designed vehicles for centuries, the theory of auto-
motive engineering aims to articulate the goals and constraints, understand the tradeoffs,
and offer general methodological guidelines that contribute to the success of the design
process.

If nothing else, such a design theory for mathematics may help us better convey our
expertise, since the aim of our expository and educational efforts in mathematics is to
convey advice to others that will help them do mathematics well. But the need is not
only pedagogical. Just as twentieth century work in foundations has supported important
developments in mathematical method and, more recently, has supported the mechaniza-
tion of mathematical reasoning and verification, so, too, can a theory of mathematical
design contribute to mathematics itself. The primary goal here, however, is philosophical:
mathematics is important to us, and we would like to understand how it works.

A concern commonly raised when it comes to the normative assessment of mathematical
resources is that the bases for judgment may be contextual, depending, for example, on
the capacities and goals of the agents that employ them. Put simply, what counts as a
useful piece of mathematics to you may be less valuable to me. Our evaluations may
depend on our backgrounds: perhaps you know differential geometry, and I don’t. It may
depend on our talents and taste: perhaps you prefer geometric arguments, whereas I am
better when it comes to algebraic manipulations. And it may depend on our individual
goals: perhaps you are interested in the Riemann hypothesis while I am trying to prove the
Goldbach conjecture. This may leave us in the uncomfortable situation of trying to develop
an objective science of something that is largely subjective, or at least highly dependent on
context.

Once more, the analogy to the design sciences like automotive engineering is handy.
What makes a good car depends strongly on the desires, attributes, and goals of the owner,
and will vary depending on intended use: commuting to work, transporting a family, win-
ning NASCAR races, or impressing a potential mate. But theories of automotive engi-
neering tend to bracket these issues, relying on more objective measures of value: ca-
pacity, legroom, storage space, fuel efficiency, horsepower, acceleration, and the like. It
is understood that there are tradeoffs involved, but the hope is that various weightings
and combinations of these parameters are sufficiently capable of representing the more
subjective measures to provide useful guidance as to how the latter can be addressed.

In the same way, we would expect a theory of mathematical design to be parameterized
by features of the mathematical context that play a role in normative evaluations. Part of
the challenge in developing such a theory is determining what these features are, and how
they interact.

§3. The concept of modularity.

3.1. The general notion. The locus classicus of the study of modularity in complex
systems is Herbert Simon’s 1962 essay, “The architecture of complexity” [36], which
examines the nature of complex systems in biology, physics, and economics, as well as
social and symbolic systems. Though widely viewed as a seminal source in the study of
modular systems, it is a curious historical fact that the word “modular” never appears in
that work; rather, Simon used the phrase “nearly decomposible” in its place. The term
“modular” is now used in disparate fields of research, and applied to both natural systems
and systems that are designed. Before focusing on the use of the term in computer science,
it will be helpful to try to discern features that are common to the various descriptions of
modularity in the disciplines just enumerated.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 51

It is important to keep in mind that any discussion of a complex system, whether it
is natural or artificial, presupposes a level of description that is appropriate to the fea-
tures and behaviors of interest. For example, a human being can be construed as a bi-
ological system, a cognitive system, or an agent in a social network. A different design
description will be operant in each case. There is an inherently teleological component
to the choice of a description; when we speak of the design of a system, we invariably
have a functional description of the system and its components in mind and, moreover,
are generally interested in understanding how the behavior of the components contribute
to the system’s observed or desired behavior. It will therefore be important, when we
turn our attention to such mathematical artifacts later on, to think about the features and
behaviors that we are trying to model. In the meanwhile, keep in mind that when we
talk about a modular system, we are really talking about the modularity of a certain de-
sign description, which we take to be adequate to capture those properties that are of
interest.

With this caveat implicit, a complex system is generally said to be modular to the extent
it has the following features:

• The system is divided into components, or modules, with dependencies between
them.

• The division supports a level of abstraction: the function of the components can
be described vis-à-vis the functioning of the entire system, without reference to the
particular implementation.

• Dependencies between modules are kept small and mediated by precise specifica-
tions or interfaces.

• Dependencies within a module may be complex, but, due to encapsulation or in-
formation hiding, these are not visible outside the module.1

The relevant notion of “dependency,” which is central to this description, will depend on
the kind of system under analysis. In an administrative system, dependencies can include
channels of communication between and within components, as well as relationships of
authority. In the design of hardware systems, the relevant dependencies are physical con-
nections or data transfers between and within components, but they can also be used to
model dependencies between activities and events involved in the factory production of
the system. In a biological system, the relevant dependencies are likely to include causal
relations between processes and subsystems. Below, we will discuss, in detail, the kinds of
dependencies that are relevant to software design and to mathematics.

Modularity is often associated with an additional property:

• Organization into modules can be hierarchical: within a module, components can
be divided into smaller submodules, and so on.

This is not a necessary feature of a modular system, in that one can have modular designs
that are essentially flat.2 But a hierarchical design only makes sense in terms of a modular
presentation, and, conversely, the most modular description of a system is often obtained
via a hierarchical conception of its components. As mathematical theories and proofs also
have a hierarchical structure, this is an issue that is worth keeping in mind.

1 Some characterizations of modularity are more involved. For example, Fodor [22] provides a long
list of features generally associated with modularity. However, others have pointed out [10, 34]
that most of these seem to be derivative of the notion of encapsulation.

2 Parnas [32] observes this as well.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

52 JEREMY AVIGAD

With respect to both natural and artificial (which is to say, designed) systems, modularity
is often credited with the system’s ability to achieve a desired behavior. In the case of
designed systems, modularity is also credited with making it possible for an agent to
produce the system itself (thereby also, indirectly, achieving the desired behavior). Since
we are thinking of mathematics as a human artifact, the analogies to designed systems
will generally be more appropriate. Across the literature, the purported benefits of modular
design generally fall under the following headings:

• Comprehensibility. When a system is modular, it is easier to understand, explain,
and predict its behavior. In fact, modularity is often held to be a precondition
for comprehensibility, or surveyability: when a system is sufficiently complex,
it cannot be adequately understood unless a sufficiently modular description is
available.

• Reliability and robustness. An appropriately modular description makes it possible
to assess and test components of a system individually, to localize a problem to the
behavior of one component, and to detect problems that would otherwise be lost in
an overabundance of detail.

• Independence. A modular design allows the components of a system to be built
(or to evolve) independently. They can be built concurrently, by different agents, at
different locations.

• Flexibility. A modular design allows the system to change more quickly. For ex-
ample, one can change the implementation of one component, without having to
modify all the other components in the system, and one can add functionality to a
component, without breaking the behavior of other components that depend on it.

• Reuse. Components that prove successful in one system can be used in other sys-
tems, in which one would like to obtain comparable behavior.

All these aspects are found in Simon’s essay. Similarly, the book Design Rules: Volume
1. The Power of Modularity [9] is about the design of computer hardware and characterizes
modularity as “a particular design structure, in which parameters and tasks are dependent
within units (modules) and independent across them.”

The concept of modularity spans an important set of principles in design
theory: design rules, independent task blocks, clean interfaces, nested
hierarchies, and the separation of hidden and visible information. Taken
as a whole, these principles provide the means for human beings to
divide up the knowledge and the specific tasks involved in completing
a complex design or constructing a complex artifact. [9, pp. 89–90]

The authors go on to explain that “modularity does three basic things” that designers
might judge to be desirable:

1. Modularity increases the range of “manageable” complexity. It
does this by limiting the scope of interaction between elements or tasks,
thereby reducing the amount and range of cycling that occurs in a de-
sign or production process. As the number of steps in an interconnected
process increases, the process becomes increasingly difficult to bring to
successful completion

2. Modularity allows different parts of a large design to be worked on
concurrently. The independent blocks in a modular task structure can all
be worked on simultaneously

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 53

3. Modularity accommodates uncertainty. The defining characteristic
of a modular design is that it partitions design parameters into those that
are visible and those that are hidden. Hidden parameters are isolated
from other parts of the design, and are allowed to vary. (Sometimes
their range is limited, but they can vary within the range.) Thus from the
perspective of the architects and the designers of other hidden modules,
hidden parameter values are uncertain. They lie inside a black box known
as “the module.” [9, pp. 90–91]

Applied to the design of mathematical resources, these goals are appealing: we would
like our mathematics to be comprehensible, reliable, flexible, and reusable, and, of course,
mathematical contributions are made by agents working independently, at different times
and in different locations. Our task in §4 will be to understand how the modular design of
mathematical artifacts supports these goals.

3.2. Modularity in software engineering. The gospel of modular design is most keenly
felt in computer science and software engineering. The digital microprocessors that lie at
the heart of modern computers embody fairly simple models of computation: they maintain
internal registers, move information from memory, carry out arithmetic comparisons, and,
importantly, branch on the results of these comparisons to different parts of the code. Long
sequences of instructions written in assembly language, which directly represent a machine
instruction set, are generally hard to understand and difficult to write, and they are likely to
contain mistakes. Although programming languages like Fortran (introduced in the 1950s)
and Basic (introduced in the early 1960s) were an advance over assembly language, early
programmers still produced long sequences of instructions and branch (go to) statements
that often resulted in “spaghetti code.”

Early programming languages did, however, provide the ability to write sub-
routines, procedures that could be separated from a block of code and called as
though executing a single instruction. This allowed programmers to divide complex tasks
into smaller ones that could be designed and tested independently. In the 1960s,
programming methodologies evolved to support a style of implementation wherein a sub-
routine can be viewed as an independent module, conceptually distinct from other parts
of the program. Interactions with other pieces of code were mediated by the module’s
interface, which specified the input expected by the subroutine, the output it would
return, and any behavior that might alter the global state of a computation, which is
visible to outside code. A programmer could then focus on writing code in such a
way to meet this specification, while other programmers could use the subroutine
knowing only the specification, without knowing or caring about the implementation
details.

In the 1970s, programming methodology itself became an object of study. At the start
of the decade, Niklaus Wirth, designer of the Pascal programming language, published an
article titled “Program development by stepwise refinement” [41] in which he considered
“the creative activity of programming . . . as a sequence of design decisions concerning the
decomposition of tasks into subtasks and of data into data structures.” It drew a sequence
of four conclusions, the first two of which are as follows:

1. Program construction consists of a sequence of refinement steps. In
each step, a given task is broken up into a number of subtasks. Each
refinement in the description of a task may be accompanied by a re-
finement of the description of the data which constitute the means of

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

54 JEREMY AVIGAD

communication between the subtasks. Refinement of the description
of program and data structures should proceed in parallel.

2. The degree of modularity obtained in this way will determine the
ease or difficulty with which a program can be adapted to changes or
extensions of the purpose or changes in the environment (language,
computer) in which it is executed.

In 1972, David Parnas, a member of the Department of Computer Science at Carnegie
Mellon University, wrote an influential article, “On the criteria to be used in decomposing
systems into modules” [32]. It begins by quoting a 1970 textbook:

A well-defined segmentation of the project effort ensures system mod-
ularity. Each task forms a separate, distinct program module. At imple-
mentation time each module and its inputs and outputs are well-defined,
there is no confusion in the intended interface with other system mod-
ules. At checkout time the integrity of the module is tested indepen-
dently; there are few scheduling problems in synchronizing the com-
pletion of several tasks before checkout can begin. Finally, the system
is maintained in a modular fashion; system errors and deficiencies can
be traced to specific system modules, thus limiting the scope of detailed
error searching.

Parnas continued:

The major advancement in the area of modular programming has been
the development of coding techniques and assemblers which (1) allow
one module to be written with little knowledge of the code in another
module, and (2) allow modules to be reassembled and replaced without
reassembly of the whole system. This facility is extremely valuable for
the production of large pieces of code . . .

Comparing two ways of breaking a particular program into modules, Parnas argued that
the more effective division is one that incorporates “information hiding”:

We propose . . . that one begins with a list of difficult design decisions
or design decisions which are likely to change. Each module is then
designed to hide such a decision from the others.

The article also summarizes the reasons to adopt such an approach.

The benefits expected of modular programming are: (1) managerial—
development time should be shortened because separate groups would
work on each module with little need for communication; (2) product
flexibility—it should be possible to make drastic changes to one module
without a need to change others; (3) comprehensibility—it should be
possible to study the system one module at a time. The whole system
can therefore be better designed because it is better understood.

The word “encapsulation” is often used in place of “information hiding.” In 1974, in an
essay called “On the role of scientific thought” (eventually published as [19]), the computer
scientist Edsger Dijkstra, who was also cited in Parnas’ article, used the phrase “separation
of concerns.” This phrase has also come to stand as the goal of a modular structuring. In
1978, Glenford Myers, then a software engineer at the IBM Systems Research Institute in

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 55

New York, wrote a textbook [31] that codified the modular approach and again emphasized
the same benefits: understandability, maintainability, flexibility, and reuse.

It was not long before this advice made its way into the undergraduate curriculum.
The influential MIT textbook, Structure and Interpretation of Computer Programs [1],
was first published in 1985; its first three chapters are titled “Building Abstractions with
Procedures,” “Building Abstractions with Data,” and “Modularity, Objects, and State.”
Most software engineering textbooks today focus on compositional design and explic-
itly emphasize the benefits of modularity. The overall message can be summarized as
follows:

• Large programs should be divided into independent modules.
• A module is a body of code with a well-defined interface. The interface specifies

what procedures the user can call from the outside, what data these procedures
expect, what data these procedures return, what state information the module keeps
track of, and how procedural calls change the state.

• The internal workings of the code can otherwise largely be ignored; in particular,
code that interacts through the interface is guaranteed to work even if the imple-
mentation changes.

This is essentially an instantiation of the notion of a modular system, as characterized in
§3.1, to the case of software design.

In §4, we will regard mathematical artifacts from such a perspective and consider a piece
of mathematics such as a theory or a proof to be modular if it is structured as a collection of
components with well-defined interfaces that hide implementation details when possible.
We will then consider ways that such a structuring confers comprehensibility, reliability,
flexibility, and reuse, just as it does in software design.

3.3. Refactoring. The dicta of modularity recommend designing software in certain
ways. But large software projects tend to grow and evolve over time, often in haphazard
and unpredictable ways, and despite their best intentions, teams of software engineers often
find the complexity of a body of code getting out of hand. When that happens, it is generally
deemed to be a good idea to revise the code, reorganizing and rewriting various parts,
in order to restore modularity and its benefits. In that respect, computer scientists and
engineers speak of refactoring. Like the sailors on Neurath’s boat, they have the task of
revising and improving the code while it is still actively being used.

A 1999 textbook by Martin Fowler, Refactoring: Improving the Design of Existing Code,
describes the methodology. The following passage, contributed by Kent Beck, conveys the
central idea:

Programs have two kinds of value: what they can do for you today and
what they can do for you tomorrow. Most of the times when we are
programming, we are focused on what we want the program to do today
. . .

. . . you know what you need to do today, but you’re not quite sure
about tomorrow. Maybe you’ll do this, maybe that, maybe something
you haven’t imagined yet.

I know enough to do today’s work. I don’t know enough to do tomor-
row’s. But if I only work for today, I won’t be able to work for tomorrow
at all.

Refactoring is one way out of that bind . . .

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

56 JEREMY AVIGAD

Refactoring is the process of taking a running program and adding to
its value, not by changing its behavior but by giving it more of these
qualities that enable us to continue developing at speed.

The book is a journeyman’s guide to restructuring code, reorganizing data, improving
interfaces, and improving encapsulation.

When one considers the history of mathematics, one sees that mathematical
developments—definitions, proofs, and theories—are often revised, recast, and restruc-
tured over time. This can happen on the scale of centuries. In §4, however, we will note
that the pressures to do so, and the attendant benefits, are similar to the ones involved
in refactoring software. Thus viewing historical developments in these terms can help us
understand them better.

3.4. Characterizing modularity of programs. Textbooks in computer science typi-
cally describe modularity without offering a precise definition of the notion. Toward ob-
taining better formal models of modularity in mathematics, however, it will be helpful to
gain additional clarity as to what the concept entails. As noted in §3.1, talk of modularity
presupposes notions of dependence, interface, and encapsulation. The aim of this section
is to better understand the way these notions play out in the setting of computer science.

At face value, pronouncements about modularity of code are precisely that: ascriptions
of properties to the syntactic strings of symbols that constitute computer programs. To
some extent, it may be possible to make sense of the modularity of something more abstract
than a computer program; for example, it may make sense to talk about the modularity of
an algorithm, independent of the programming language and the particular piece of code
that implements it. But finding an appropriate level of abstraction is likely to be delicate,
and not essential to my present goals. So, at least for the time being, it makes sense to start
with syntax.

Expressions in a programming language can be used not only to define programs them-
selves but also to declare data types and data. Here are some examples, in a made-up
programming language:

struct point := {xval : float, yval : float}

const pi : float := 3.1415

def gcd (x y : nat) : nat :=
if y = 0 then x else gcd y (x mod y)

def circle_area (r : float) : float := pi * r^2

def distance (a b : point) : float :=
sqrt ((a.xval - b.xval)^2 + (a.yval - b.yval)^2).

Each of these is a definition, which associates an identifier, the definiendum, to an expres-
sion, the definiens. In the examples, the identifiers that are introduced are point, pi,
gcd, circle_area, and distance. In each case, the expression after := provides the
definiens.

In addition, each definition either implicitly or explicitly singles out the type of object
being defined. Specifically, the first example declares a new data type, point, which is
a structure that consists of two integers, denoted xval and yval. The second example
declares pi to be a floating point constant; the expression float after the colon specifies

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 57

the type of object that is being defined. The next three examples, gcd, circle_area,
and distance, are functions. The parenthesized expressions that appear after the name
but before the colon indicate the type of inputs each function expects, whereas the expres-
sions nat and float after the colon specify the type of output. The first of these is a
recursive definition of a function that computes the greatest common divisor of two natural
numbers; the next computes the area of a circle with radius r, and the final one computes
the distance between two points.

Now notice that the body of a definition can make use of identifiers for other objects and
data types. These identifiers may be defined in the same file, or imported from another file
or library, or built into the system at a fundamental level. For example, the definition of
point presupposes that the system knows what a float is; the definition of the function
circle_area makes use of pi, the multiplication symbol, the exponentiation symbol,
and the constant symbol 2; and the definition of distance uses, among other things,
point, sqrt, and the projections xval and yval, which return the components of a
point.

This induces a bare-bones notion of syntactic dependence: one definition depends on an-
other if the declaration of the first—the definiens and its data type specification—references
the definiendum of the second. Thus, circle_area, for example, depends on pi, mul-
tiplication, exponentiation, 2, and the float data type.

There are other notions of dependence, which may be closer to one’s specific concerns.
These include

• Syntactic correctness. The syntactic correctness of a definition depends on types
of the definitions it refers to. For example, the syntactic correctness of the function
circle_area depends on the fact that the function sqrt expects a floating point
input and returns a floating point output.

• Semantics. The intended denotation of a definition depends on the denotations of
the definitions it refers to. For example, if we take the semantic denotation of
a function identifier to be a function from inputs to outputs, the function that a
definition denotes depends on the semantic denotations of the identifiers it involves.

• Semantic properties. The properties of the object denoted, such as the fact that
circle_area always returns a nonnegative number, depends on properties of
the definitions it depends on, such as the property that pi is a positive number.

These can all be taken to be derivative of the notion of syntactic dependence, in the sense
that each of these dependencies follows from the brute syntactic dependencies between
program elements.

What counts as the notion of an interface, however, seems to be more sensitive to context.
From the point of view of syntactic correctness, it may be sufficient to think of the interface
as being the syntactic specification of the data type: the interface to point, for example,
specifies that it is a structure with the two projections, xval and yval. From the semantic
point of view, the interface may be the denotation itself: all we need to know to determine
the denotation of a defined function are the denotations of the components, independent
of how they are implemented. Finally, when it comes to reasoning about properties of the
objects that the identifiers denote, the interface may simply be the list of relevant properties.
For example, for some purposes, we may only need to know that circle_area returns
a nonnegative number, or that gcd is nonzero if both of its inputs are. In that case, those
properties can be included in a formal or informal specification, which then becomes the
relevant interface.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

58 JEREMY AVIGAD

What is encapsulated is then everything that is left out of the interface. From the point
of view of checking syntactic correctness, all that is important is that pi denotes a float;
the particular value is hidden to the definition that references it. From the point of view of
determining the denotation of circle_area, all we need to know is that sqrt computes
a certain approximation to the square root function; the details of the definition of that
function are again left hidden. When reasoning about properties of the denoted objects, if
we need to know that circle_area returns a nonnegative number, then in that context
the specification can hide any additional information about the value that is computed.

When we transfer the notions to mathematical definitions and proofs in §4, we will see
that in a sense some of the issues are more cleanly expressed there. Formal languages
used by contemporary interactive proof assistants provide means to define mathematical
objects and, moreover, to reason about their properties. As a result, the distinction between
interfaces that express data types and interfaces that express properties is not sharp; math-
ematical interfaces can specify both uniformly.

Let me add a few observations that will be relevant to the discussion of modularity in
mathematics. First, notice that we can distinguish between direct and indirect dependen-
cies. One definition may refer to another, which, in turn, refers to a third. A definition
then depends directly on the definitions it refers to in its definiens, and indirectly to the
ones that occur downstream. In discussions of modularity, it is generally the direct depen-
dencies that we care about, the ones that the definition itself “sees.” The whole point to
modularization is to organize matters so that the lower level dependencies are managed
through the intermediaries.

Second, large programs and libraries tend to be hierarchical in nature. Complex proce-
dures are implemented in terms of simpler ones, and even within the body of a function
definition, tasks and steps are often decomposed into blocks. Libraries of routines are often
grouped into modules, which are groups of procedures that share data, representations, and
supporting utilities.

Concomitant with this hierarchical organization, objects usually come with a
well-defined scope, which is to say, identifiers are only visible at some points in a devel-
opment. For example, a local variable x : nat may be used within a function definition,
proving a reference that is only defined within the scope of that definition. Or a library
module may define utility routines that are only visible to other functions and procedures
in the module. This is a way of enforcing separation of concerns and limiting dependence.
It is often useful to invoke the notion of a context, which one can think of a record of the
objects that are visible in a given scope.

Finally, it is important to recognize that in programming languages, dependencies are
sometimes left implicit, and ambiguous expressions are sometimes disambiguated by the
surrounding data. For example, in the definition of circle_area, the multiplication
symbol denotes multiplication of floating point numbers, while in other situations it may
denote multiplication of integers. Or, when multiplying a floating point number by an
integer, the system might insert an implicit cast, in this case, the function which converts
the integer to a float. In that case, the code may be said to depend on the cast, even though
it is not explicitly present in the definition.

This last feature is much more pronounced in ordinary mathematical definitions and
proofs, where a tremendous amount of information is left implicit. In an ordinary proof,
explanations as to why a certain claim follows from the ones previous to it are often omitted
entirely, leaving it to the reader to fill in the justification. Thus we have to deal with not
only implicit dependencies of proofs on facts but also the complexity of filling in these

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 59

justifications and the mechanisms that make it possible to do that efficiently. We will return
to this issue below.

§4. Modularity in mathematics.

4.1. From programs to proofs. Replace “software” by “piece of mathematics” ev-
erywhere in the last section, and many of the statements still make sense. Developing
mathematics in a modular way should make the mathematics easier to understand, less
error-prone, and more flexible and reusable. Our goal now is to explore the analogy and
make it more precise.

At least some computer scientists have made this analogy explicit. Part XVII of Robert
Harper’s Practical Foundations for Programming Languages [24] is titled “Modularity,”
and Chapter 44, “Type Abstractions and Type Classes,” opens with the following observa-
tion:

Modularity is not limited to programming languages. In mathematics,
the proof of a theorem is decomposed into a collection of definitions
and lemmas. Cross-references among lemmas determine a dependency
structure that constrains their integration to form a complete proof of
the main theorem. Of course, one person’s theorem is another person’s
lemma; there is no intrinsic limit on the depth and complexity of the
hierarchies of results in mathematics. Mathematical structures are them-
selves composed of separable parts, as, for example, a Lie group is a
group structure on a manifold.

We have already seen that data type and function type specifications in programming
languages can be seen as a way of supporting modularity, providing interfaces that specify
how a particular data or function can be used. This discipline is central to Harper’s book.

The analogies between mathematical texts and computer programs are fairly straightfor-
ward. Mathematical proofs are decomposed into definitions and lemmas, just as programs
are decomposed into smaller blocks of code. Ordinary mathematics imposes an interface
that regulates talk of Lie groups and complex numbers and encapsulates the specifics as to
how these are defined, just as a modular programming style imposes an interface on data
structures that encapsulates the details of the implementation.3

To be sure, there are differences between writing a program and proving a theorem.
One difference lies in the scope of the theorem-proving enterprise: most programs are
fairly self-contained, whereas a mathematical theorem can rely on definitions and facts
introduced by countless others over a course of decades or centuries. We would thus expect
to see in mathematics the kind of refactoring that occurs in large software projects, for
example, with industrial programs that are the product of multiple contributors over a long
period of time. And, indeed, we do: in the history of mathematics, it is often the case that
concepts are introduced, a theorem is proved, the concepts then are refined, and the proofs
are rewritten to improve comprehensibility, robustness, and reusability. This gives hope
that programming methodology can help illuminate the way that mathematical theories
and proofs evolve.

3 I am grateful to David Waszek for pointing out that Bourbaki discussed aspects of the modular
structure of mathematics, though not in those terms (indeed, long before the term “modularity”
was widely used). Their manifesto [12] describes the use of axiomatic and structural methods to
manage complexity, render mathematics intelligible, and unify different parts of the field. It also
emphasizes the resulting gains in economy and efficiency of thought.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

60 JEREMY AVIGAD

In a branch of computer science known as formal verification, one can now use com-
putational proof assistants to verify the correctness of mathematical theorems, and the
formal languages they use will help us solidify the correspondence between mathematical
texts and proofs. Working interactively with such a proof assistant, users provide input in
stylized proof languages, providing enough information for the system to construct a fully
detailed proof in an underlying formal axiomatic system. We can think of such a proof
script as providing instructions to the system as to how to construct the desired proof. In
other words, a proof script is really a program, of sorts. Indeed, practitioners often refer to
proof scripts informally as “code.”

Interactive theorem proving thereby provides a useful intermediary. Insofar as the texts
acted on by computational proof assistants are like computer code, we can speak of mod-
ularity of these formal texts in ways similar to the ways we speak of modularity of code.
And insofar as these formal texts model informal mathematical language, we can expect
that modularity of the formal texts should tell us something about modularity in informal
mathematics. Reading an informal mathematical proof and assessing its correctness re-
quire us to keep track of local data and hypotheses, and combine then with background
knowledge drawn from a wide variety of domains. The computational verification of a
formal proof requires the same. We can therefore optimistically expect that mechanisms
for developing formal mathematical theories in a modular way will illuminate the methods
we use to develop informal mathematical theories in a modular way, and the benefits of
modularity in formal mathematical texts should tell us something about the benefits of
modularity in ordinary mathematics.

The analogies between formalized mathematics and software have also been made ex-
plicit in the past. For example, the formalization of the Feit–Thompson Odd Order The-
orem, an important first step in the classification of finite simple groups, was a milestone
achievement in interactive theorem proving. The project, led by Georges Gonthier, was a
joint venture between the French computer science agency Inria and Microsoft Research,
Cambridge, and made use of an interactive proof assistant called Coq. The project was
completed in 2012 and is described in a report written by 14 authors (myself among them)
[23]. Even the name of the project, Mathematical Components, invokes a catchphrase,
“software components,” that is used to describe modular programming methodology in
software engineering. At the time of writing, an Inria web page4 describes the project in
the following way:

The object of this project is to demonstrate that formalized mathemati-
cal theories can, like modern software, be built out of components. By
components we mean modules that comprise both the static (objects
and facts) and dynamic (proof and computation methods) contents of
theories.

The report on the formalization [23] invokes similar analogies to software design:

. . . the success of such a large-scale formalization demands a careful
choice of representations that are left implicit in the paper description.
Taking advantage of Coq’s type mechanisms and computational behav-
ior allows us to organize the code in successive layers and interfaces.
The lower-level libraries implement constructions of basic objects, con-
strained by the specifics of the constructive framework. Presented with

4 http://www.msr-inria.fr/projects/mathematical-components-2/.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 61

these interfaces, the users of the higher-level libraries can then ignore
these constructions . . .

And later:

A crucial ingredient [in the success of the project] was the transfer of
the methodology of “generic programming” to formal proofs . . . [T]he
most time-consuming part of the project involved getting the base and in-
termediate libraries right. This required systematic consolidation phases
performed after the production of new material. The corpus of mathemat-
ical theories preliminary to the actual proof of the Odd Order theorem
represents the main reusable part of this work, and contributes to almost
80 percent of the total length. Of course, the success of such a large
formalization, involving several people at different locations, required a
very strict discipline, with uniform naming conventions, synchronization
of parallel developments, refactoring, and benchmarking . . .

The analogy, then, is at least suggestive. Just as we clarified the notion of modularity in
programming languages in §3.4 with reference to a made-up programming language, let
us try to spell out the relevant notions of dependence and interface with respect to a formal
proof language.5

4.2. Toward a formal model. We have seen that in a conventional programming lan-
guage, identifiers can refer to at least two different sorts of objects: data type specifications,
such as nat, float, and point in the examples in §3.4, and data itself, such as pi
and circle_area. Notice that I am not distinguishing between constants and functions
in treating both as data: the constant pi is an object of type float and the function
circle_area is an object type float → float, where the arrow is used to denote a
function type. In other words, if we think of the function specification as a data type, we
can view constants and functions uniformly as data, whose intended usage and behavior
are specified by their associated type.

Interactive theorem proving adds two more components to the mix: in addition to speci-
fying mathematical objects and their types, one can also make assertions and prove them.
Thus, the language of a proof assistant will provide means to construct expressions denot-
ing all of the following objects:

• data type specifications,
• mathematical objects of these types,
• propositions,
• proofs of these propositions.

This list is not meant to be exhaustive: many interactive theorem provers also provide
means to organize information and import objects into the current context, configure au-
tomation, provide heuristic hints, write new proof procedures, evaluate expressions, and so
on. But entities listed above are essential, and it is hard to imagine anything that might be
called a theorem prover that does not provide means to describe them.

For illustrative purposes, I will adopt a logical framework known as dependent type
theory, which provides a single uniform language in which one can define all four sorts

5 For this purpose, I will in fact use an actual proof language, namely, that of the Lean theorem
prover [17].

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

62 JEREMY AVIGAD

of objects. The use of dependent type theory is not essential to the account, but it is
convenient, especially because it also allows dependencies between objects of the different
categories. In dependent type theory, there are expressions, and every expression has a type.
The novelty is that data types themselves are expressions in the language, which happen
to have the type Type. Propositions are also expressions in the language, having the type
Prop. And if p is a proposition in the language, a proof of p is nothing more than an
expression having type p. In other words, all four objects above are given by expressions
in the same language:

• A data type specification, α, is given by an expression of type Type.
• A mathematical object of that type is given by expression of type α.
• A proposition, p, is given by an expression of type Prop.
• A proof of that proposition is given by an expression of type p.

As in §3.4, we can write e : α to indicate that expression e has type α, which in turn
determines what sort of object e is.

• If α : Type, then α is a data type. In that case, e : α means that e denotes an
object of that type.

• If p : Prop, then p is a proposition. In that case, e : p means that e is a proof
of p.

As in §3.4, we can also use the general pattern i : α := e to denote that the identifier
i denotes the object of type α defined by e, where α can be either Type, a particular data
type, Prop, or a particular proposition. This provides us with a uniform language for
expressing data types, objects, assertions, and proofs. To repeat, the use of dependent type
theory is not essential here; we could have used four separate languages instead. What is
important for the model of mathematical language we adopt here is that (1) we can express
all four sorts of objects; (2) every expression has a syntactic type, which indicates what
sort of entity it is; and (3) the various syntactic categories interact with one another, as
described below.

As examples of types and objects, N denotes the type of natural numbers, and bool
denotes the type of Boolean values (tt and ff, for “true” and “false”). The type N×
bool is the type of pairs consisting of a natural number and a boolean, and the type
N → N → N is the type of functions that take two natural numbers as arguments and
return a natural number, where by convention the arrow operation associates to the right.
In contrast, the type (N → N) → N is the type of functionals that take a function from
natural numbers to natural numbers as arguments and return a natural number.

We can specify variables of these types:

variables (m n: N) (f : N → N) (p : N×N),
variable g : N → N → N,
variable F : (N → N) → N.

Once that is done, f n and pr1 p and m + n^2 + 7 are all terms of type N. Note
that function application is written without parentheses, so that g m is a function of type
N → N and g m n is an expression of type N. Thus we can view g as a function that
takes two natural numbers as arguments and returns a natural number, and F (g m) is
also an expression of type N.

We can write propositions using quantifiers and connectives in the usual ways. For
example, consider the following proposition:

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 63

∀ α : Type, ∀ x y z : α, x = y → y = z → x = z.

This expresses that for every type α, the equality relation on α is transitive. Notice that
here we do not have to specify that = denotes the equality relation on α, since that can be
inferred from the fact that the arguments have type α.

We can then start writing definitions and proving theorems, which amounts to intro-
ducing identifiers to name the various kinds of objects. The following example illustrates
this.

def binary_relation (α : Type) : Type := α → α → Prop

def transitive {α : Type} (r : binary_relation α) : Prop
:=

∀ {x y z}, r x y → r y z → r x z

def binary_relation_inverse {α : Type}
(r : binary_relation α) : binary_relation α :=

λ x y, r y x

theorem transitive_binary_relation_inverse {α : Type}
{r : binary_relation α} :

transitive r → transitive (binary_relation_inverse r)
:=

assume h : transitive r,
assume x y z : α,
assume h1 : binary_relation_inverse r x y,
assume h2 : binary_relation_inverse r y z,
show binary_relation_inverse r x z,

from h h2 h1.

The first definition, binary_relation, defines a new data type: for every type α,
binary_relation α is the type of binary relations on α. Notice that we can represent
such a relation as a function rwhich takes two elements of α and returns a proposition. The
second definition, transitive, introduces a new predicate on binary relations: if r is a
binary relation on a type α, the expression transitive r represents the assertion that r
is transitive. The curly brackets in the definition specify that we do not need to indicate the
underlying type α explicitly, since it can be inferred from the type of r. In other words, we
can write transitive r instead of transitive α r, thereby leaving the depen-
dence on α implicit. (These implicit dependencies were foreshadowed in §3.4 and are dis-
cussed in further detail below.) The function binary_relation_inverse takes a bi-
nary relation r as input, and returns the inverse relation: binary_relation_inverse
r x y holds if and only if r y x holds. Finally, transitive_binary_relation_
inverse names the theorem that if a binary relation r is transitive, so is binary_
relation_inverse r. The expression following := is a proof of that theorem.

The precise syntax of dependent type theory need not concern us here. What is important
is that, as in §3.4, the association of identifiers to expressions induces a notion of depen-
dence: an expression depends on the identifiers it mentions. For example, the definitions
of transitivity of the inverse relation, presented above, depend on the notion of a binary
relation. The theorem transitive_binrel_inverse depends, in turn, on the no-
tions of transitivity and inverse relation. The proof of transitive_binrel_inverse

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

64 JEREMY AVIGAD

uses nothing beyond pure logic, but if the proof invoked other lemmas, theorems, and
constructions, we would have a formal record of those dependencies as well.

Recall that in §3.4, we observed that there are derivative notions of dependence asso-
ciated with the semantic reference of the expressions involved. Here, however, there is
less of a need to invoke semantic notions. Since interactive theorem provers rely on a
foundational language to specify all mathematical objects and their properties, it is not
clear that there is anything to be gained by stepping outside the system and worrying about
semantic reference. Similarly, because we can assert and establish facts about the objects
we define within the foundational language, dependencies between properties are tracked
by syntactic references as well.

The examples make it clear that an expression of one sort can depend on entities of other
sorts. For example, the definition of a mathematical object can depend on other objects and
data types, and a proof can depend on data types, objects, propositions, and other proofs.
Some of the dependencies that can occur are not as obvious. The expression if even
x then 0 else 1 denotes an object (in this case, a natural number), but it depends
on the proposition even x. More strikingly, the definition of an object can depend on a
proof; if we were to define gcd x y as the greatest common divisor of x and y, we would
have to provide a proof that this description characterizes a unique object.

As noted in §3.4, what we generally care about are the direct dependencies between
expressions and identifiers, but some dependencies may be implicit. Expressions in inter-
active theorem provers often elide information which is inferred and inserted by the system.
For example, the system may infer that a multiplication symbol denotes multiplication in a
group. In that case, the expression implicitly depends on the notion of a group, and on the
notion of multiplication in a group. The situation is even more complicated with proofs.
Ordinary mathematical proofs often omit detailed justifications and leave it to the reader
to fill in the details. This is mirrored in an interactive theorem prover by the fact that often
proofs are supplied by automated routines, which invoke theorems and constructions that
are invisible to the user. In that case, we should say that the surface proof implicitly depends
on the facts and data invoked by the automation; or in some contexts, perhaps, it would be
more illuminating to say that the proof depends on the steps supplied by the automation,
treating those steps as black boxes.

4.3. Mathematical interfaces. Given the centrality of the notion of an interface in
computer science, we should now say something about how it plays out in a mathematical
setting. In §3.4, we saw that the notion of interface is slippery and context dependent.
What is considered an interface in computer science can depend, for example, one whether
one is trying to account for syntactic correctness, the denotation of a program, or specific
properties. It can also depend on the object of analysis, which can be a single function,
data structure, or procedure, or a module or library that bundles a number of these together
to provide useful functionality.

The same is true in the mathematical setting. To start with, as was the case with com-
puter programs, type information can be viewed as an interface for mathematical objects
and functions. Knowing that an expression e has type N means that one can profitably
write e + 7 or send it to other functions that expect a natural number as input. It also
specifies that it can serve to instantiate any theorem that makes a general statement about
natural numbers. Similarly, knowing that an expression f has type N → N → N means
that it can be applied to two natural numbers to obtain a natural number, and also that
it can be sent as an argument to another function that expects such a function as an
argument.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 65

Analogously, the “interface” to a theorem-proof pair is the statement of the theorem
itself. Suppose we have a proof of Fermat’s last theorem in our library:

theorem fermat :
∀ x y z n : N, n > 2 ∧ x * y * z �= 0 → x^n + y^n �=
z^n := ...

The statement of the theorem specifies that it can be applied to any tuple of natural numbers
x, y, z, and n, provided n > 2 and x, y, and z are not all zero. The very act of stating
and proving a theorem presents a powerful form of encapsulation: anyone can make use
of the theorem knowing only the statement of the theorem and the fact that it has been
proved. The details of the proof can remain hidden. Mathematics would be unworkable
if we had to recapitulate the proof of a theorem each time we want to use it, so this
type of encapsulation is essential to the reusability of theorems and the ability of different
mathematical communities to develop results independently and share them after the fact.

But if we try to transfer this observation back to expressions that denote objects and
functions, we find that the analogy breaks down: the type of an object or function is clearly
not sufficient to specify all aspects of its proper use. Knowing that a function has type
N → N → N tells us that it expects two natural numbers as arguments and returns a
natural number, but it doesn’t tell us anything more than that: the function may be addition,
or multiplication, or it may return the greatest common divisor of its inputs.

Even when it comes to definitions of objects and functions, however, encapsulation plays
an important role. Foundationally, there are many ways of defining the real numbers. For
example, they can be defined as equivalence classes of Cauchy sequences or as Dedekind
cuts. For most purposes, the specific choice is irrelevant, and conventional textbooks are
usually entirely agnostic as to how they are defined. Along these lines, most theorem
provers provide mechanisms to choose which aspects of a formal library to make publicly
available and which to hide from view. For example, a library for the real numbers might
expose arithmetic operations on the real numbers and their basic properties while hiding
the specific details of how the reals are implemented. In that sense, the body of publicly
available theorems and functions serve as the interface to the library.

One way mathematics manages such interfaces is to encode them as algebraic struc-
tures. The real numbers can be characterized uniquely, up to isomorphism, as a complete
archimedean ordered field. The algebraic structure known as an ordered field specifies a
signature of functions and relations that any instance must implement, and the properties
that they must satisfy. Theorems can then be proved generically for any structure that
meets that specification. Instantiating the real numbers as an ordered field makes those
theorems available in that particular instance. In that sense, ordered ring structure provides
an interface to the real numbers (as well as to the integers and rationals).

The situation may seem disappointing: we are looking for a notion of interface in math-
ematics, and now we have an unruly host of candidates on offer. What does this say about
our attempts to discern modular structure in mathematics?

It should be encouraging that computer science fares no better in this regard. For all
the talk of modularity and interfaces, there is no univocal interpretation of the term in
that field. Depending on the context, computer scientists may speak of an interface to a
particular data structure or function, an interface to a collection of data types and functions
bundled together into an object or module, or an interface to a complex system or body
of code. This does not seem to be a handicap. They can be very precise about particular
mechanisms that support modularity, while allowing the notion of interface to remain fluid.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

66 JEREMY AVIGAD

We should expect the same to be the case for mathematics, whether we analyze it in
formal or informal terms. Information hiding, encapsulation, and interfaces are important
to mathematics, but what is being hidden and encapsulated can vary depending on context,
and different mechanisms are used to make it happen. It will not help us to impose an artifi-
cial order. We have to analyze the data as we find it, and try to obtain a better understanding
of the way that mathematical information is managed effectively.

I have so far argued that formal methods and interactive theorem proving provide us
with a conceptual scaffolding that can help us make sense of modularity in mathematics
and understand how it plays out in informal mathematical texts. §5 takes some initial steps
in analyzing examples from ordinary mathematics in these terms.

4.4. Measures of complexity. Maintaining modularity in software is supposed to make
code easier to understand, easier to maintain, and easier to extend, and to increase the
likelihood that the code can be reused in other contexts. We would like to make the case
that maintaining modularity in mathematical theories has similar benefits. Making this
case presupposes some conception of what it means to be easier to understand, maintain,
or extend a theory. Whether we try to formalize these assessments or deal with them at an
informal level, it still behooves us to clarify the measures of understandability, maintain-
ability, or extendability we have in mind. Here I will take only a few small steps in this
direction.

Let us focus on the benefits of modularity with respect to mathematical proofs. At least
two measures of difficulty come to mind: we can consider how a modular organization
makes it easier to find, or discover, a mathematical proof in the context of a background
theory, or we can consider how a modular organization makes it possible for us to read
and understand a proof that is given to us. The distinction between the two is not sharp:
part of understanding a proof involves being able to fill in justificatory steps, and explain
why an assertion follows from previous ones. In other words, part of understanding a
proof and verifying its correctness involves rediscovering small chains of reasoning that
are left implicit. Since, however, the task of processing an existing proof seems more
straightforward than the task of finding a new one ab initio, the former seems to be a
good place to start.

Even making sense of that, however, is not an easy task. As I noted in §3.4, what makes
mathematical proofs, even formalized ones, different from computer code is the amount
of information that is ordinarily left implicit. Reading a proof is a complex task: when we
do so, we need to keep track of the objects and facts that are introduced, muster relevant
background knowledge, and fill in nontrivial reasoning steps that are nonetheless deemed
to be straightforward by the author. We should expect that a modular structuring of the
background knowledge, as well as the proof itself, should decrease the cognitive burden in
all the following ways:

• Type specifications make it possible for us to infer the types of objects and expres-
sions in front of us, for example, to recognize that one expression denotes a natural
number while another denotes an element of some group.

• Types and axiomatic structures make it easier to apply constructions and theorems,
telling us exactly what data are necessary and what side conditions need to be
dispelled, and giving us the means to recognize the structure that the constructions
and theorems presuppose.

• Types, axiomatic structures, and modular structuring of theories make it easier to
find and retrieve relevant facts from our background knowledge, since the back-
ground knowledge is organized by topic and key constructions.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 67

• Encapsulation keeps information overload at bay. Rather than require us to keep an
overwhelming level of detail fresh in our minds, a modular structuring ensures that
we only keep track of the information that is essential to the inferential structure of
the proof, suppressing extraneous and distracting details.

Spelling out a precise model to justify these intuitions is no small task. But the concerns
are familiar to those who have worked in interactive theorem proving and automated
reasoning. These fields provide formal algorithmic descriptions of fundamental cognitive
tasks: matching refers to methods that make it possible to instantiate a theorem or generic
construction to specific data, unification refers to methods that, more generally, make it
possible to instantiate variables in such a way as to make terms or hypotheses match, and
indexing refers to methods that make it possible to find relevant data and facts quickly (see,
for example, [35]). It is therefore reasonable to seek robust and cogent explanations as to
how modularity supports these fundamental tasks.

§5. Examples from number theory. In informal mathematics, modularity is every-
where you look. Take any textbook off the shelf, and you will find definitions and theorems
organized into chapters according to topic, in such a way that subsequent appeals to them
are regimented and controlled. Every definition encapsulates information in its definiens,
and theorems are carefully designed to manage the way we work with the mathematical
objects so defined. Axiomatically defined structures in algebra and analysis provide inter-
faces to instances thereof.

Nonetheless, considering a few specific examples will be informative, and will help illus-
trate some of the ways that mathematical definitions and concepts encapsulate information,
manage the flow of data, and facilitate reuse.

5.1. Congruence. Let us start with an example from number theory, one that is simple
but nonetheless illustrates some of the relevant phenomena.

DEFINITION 5.1. If x and y are integers, then x divides y, written x | y, if there is an
integer z such that y = xz.

DEFINITION 5.2. If x, y, and m are integers, then x is congruent to y modulo m, written
x ≡ y (mod m), if m | x − y.

The fact that computations modulo an integer m is known as “modular arithmetic” is
apropos. If we want to determine what day of the week it will be 1,000 days from today, we
only care about the remainder upon division by seven, and modular arithmetic provides an
interface which abstracts, or encapsulates, any additional information. Here is an example
of something that can be proved using these notions.

PROPOSITION 5.3. If x ≡ y (mod m), then x3 + 3x + 7 ≡ y3 + 3y + 7 (mod m).

Here is a brute-force proof.
Proof. Unpacking definitions, if x ≡ y (mod m), then x = y + mz for some z. Then

x3 + 3x + 7 = (y + mz)3 + 3(y + mz) + 7

= y3 + 3y2mz + 3ym2z2 + m3z3 + 3y + 3mz + 7

= y3 + 3y + 7 + m(3y2z + 3ymz2 + m2z3 + 3z),

which shows that x3 + 3x + 7 ≡ y3 + 3y + 7 (mod m). �

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

68 JEREMY AVIGAD

Of course, this is not the sort of proof one expects to see in mathematics. For one thing,
it does not scale well: replace x3 by x30 and the calculation becomes unbearable. But what
is more notable here is that it breaks an abstraction barrier. The existential quantifier in
the definition of “x divides y” serves to encapsulate information, namely, hiding the value
of z such that y = xz. We introduce such a definition precisely for that purpose. Then,
when we define congruence in terms of divisibility, we expect properties of the former to
be obtained by properties of the latter. The following is a modularization of the above proof
that respects that abstraction.

PROPOSITION 5.4. Let x, y, and z be integers.

1. x | x.

2. If x | y and y | z, then x | z.

3. If x | y and x | z, then x | y + z.

4. If x | y, then x | zy.

5. x | 0.

Proof. For the first claim, we have x = x · 1. For the second claim, if y = xu and
z = yv , then z = x(uv). For the third claim, if y = xu and z = xv , then y + z = x(u + v).
For the fourth claim, if y = xu, then zy = x(zu). The fifth claim follows from the fact that
0 = x · 0. �

With Proposition 5.4 in hand, we no longer need to unfold the definition of divisibility.
In fact, the proof of Proposition 5.4 is the only place we need to provide explicit witnesses
to the existential quantifier.

PROPOSITION 5.5. For a fixed m, the relation x ≡ y (mod m) is an equivalence
relation, which is to say, it is reflexive, symmetric, and transitive.

Proof. Since m | x − x , we have x ≡ x (mod m). If x ≡ y (mod m), then m divides
x − y, and so it divides −1(x − y), which is equal to y − x . This implies y ≡ x (mod m).
To see that congruence is transitive, suppose x ≡ y (mod m) and y ≡ z (mod m). Then
m divides both x − y and y − z, and hence it divides their sum, x − z, as required. �

PROPOSITION 5.6. 1. If x ≡ y (mod m), then x + z ≡ y + z (mod m).

2. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then x1 + x2 ≡ y1 + y2 (mod m).

3. If x ≡ y (mod m), then xz ≡ yz (mod m).

4. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then x1x2 ≡ y1 y2 (mod m).

5. If x ≡ y (mod m), then xn ≡ yn (mod m) for every natural number n.

Proof. For the first claim, (x + z) − (y + z) = x − y, so if m divides x − y, it divides
(x + z) − (y + z). The second identity is obtained by applying the first one twice, using
the commutativity of addition and the transitivity of congruence. For the third claim, if m
divides x − y, then it divides (x − y)z by clause 3 of Proposition 5.4. The fourth claim
is obtained by applying the third claim twice, and the last is obtained by induction on n,
using clause 4. �

It now follows that if p(x) is any polynomial in x with integer coefficients and x ≡ y
(mod m), then p(x) ≡ p(y) (mod m). Formally, this can be proved by induction on the
number of monomials in p. Proposition 5.3 is merely a special case.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 69

This simple example nicely illustrates the way a mathematical definition can suppress
information. In this case, it is not a matter of being able to compute the missing data: if x
divides y, then y is equal to x(y/x). At odds is simply whether y/x is an integer. Our first
proof of Proposition 5.3 shows that it is by expressing it explicitly in terms of x , z, and m.
In some cases, this information may be useful, but when it is not, keeping it around is a
distraction. Our second proof therefore suppresses it. In practice, it is often not clear what
information should be hidden and what should be left explicit. These are design decisions
that require mathematical judgment and remain subject to revision as a theory evolves.

Mathematics is replete with information hiding of this sort. In analysis, if f is a function
from the real numbers to the real numbers, writing limx→a f (x) = b means that for every
ε > 0 there is a δ > 0 with the property that whenever |x−a| < δ, | f (x)−b| < ε. Thus any
limit statement encapsulates information, namely, the dependence of δ on ε. Once again, it
is the use of the existential quantifier that serves to hide the relevant data. The notion of a
limit is used in later definitions, such as that of continuity, differentiation, and integration,
and calculus provides rules for establishing continuity and calculating derivatives and
integrals without providing explicit rates of convergence. Here the suppression is less
benign: for the purpose of approximating derivatives and integrals numerically, having a
bound on the rate of convergence is of utmost importance, and numerical analysis provides
means of obtaining these. Conventional theories of analysis, however, suppress quantitative
information in favor of a qualitative understanding of the phenomena involved.6 In that
way, the limit concept is an effective means of information management.

The refactored proof of Proposition 5.3 is not shorter than the original if we count the
auxiliary propositions, but those can be reused, and yield a much more general result. And
even in this simple case, breaking the proof into small pieces makes each step easier to
check and understand, and reduces the risk of error.

5.2. Fermat’s Little Theorem. For an example of refactoring where the gains in the
refactored proof are not solely attributable to the suppression of information, consider the
following, known as Fermat’s little theorem.

THEOREM 5.7. Let p be any prime number, and suppose p � a. Then a p−1 ≡ 1 (mod p).

This fact was known to Fermat, and Euler published a proof in 1761. An excerpt of Euler’s
proof appears in translation in Struik’s sourcebook [39]. Modern terminology agrees with
Euler’s in using the phrase “the residue of a modulo p” to denote the remainder upon
dividing a number a by p. Before the beginning of the text excerpted by Struik, Euler
has shown that for any prime p and any a not divisible by p, there is a value λ such that
aλ ≡ 1 (mod p). He has also shown that if a is not 1, then for the least such value λ > 0,
the residues of

1, a, a2, a3, . . . , aλ−1

are distinct and not equal to 0. In modern terms, we would say that the Euler has essentially
shown that the order of a is λ modulo p. In particular, aλ−1 is the multiplicative inverse of
a modulo p. Since every nonzero residue has an inverse and the product of two nonzero
residues modulo p is again a nonzero residue modulo p, we have that the set of nonzero
residues modulo p form a finite group under multiplication modulo p. We would also say

6 There is a nice discussion of this in a blog post by Terence Tao,
https://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-
analysis-and-the-finite-convergence-principle/.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

70 JEREMY AVIGAD

that the set of residues of {1, a, . . . , aλ−1} forms a subgroup of this group, that is, it is a
set that is closed under the product operation.

With those results in place, Euler builds to the proof of Theorem 5.7 with a sequence
of theorems and corollaries, of which the following is the first. (Here we have corrected a
minor typographical error in Struik’s translation.)

THEOREM 5.8. If the number of different residues resulting from the
division of the powers 1, a, a2, a3, a4, a5, etc., by the prime number p is
smaller than p − 1, then there will be at least as many numbers that are
nonresidues as there are residues.

Proof. Let aλ be the lowest power which, when divided by p, has the
residue 1, and let λ < p − 1; then the number of different residues will
be = λ and therefore smaller than p − 1. And since the number of all
numbers smaller than p is = p − 1, there obviously must in our case be
numbers that do not appear in the residues. I claim that there are at least
λ of them. To prove it, let us express the residues by the terms themselves
that produce them, and we get the residues

1, a, a2, a3, . . . , aλ−1,

whose number is λ and, reducing them in the usual way, they all become
smaller than p and are all different from each other. As λ is supposed to
be < p − 1, there exists certainly a number not occurring among those
residues. Let this number be k; now I say that, if k is not a residue,
then ak, a2k, a3k, etc. as well as aλ−1k do not appear among the
residues. Indeed, suppose that aμk is a residue resulting from the power
aα ; then we would have aα = np + aμk or aα − aμk = np and
then aα − aμk = aμ(aα−μ − k) would be divisible by p. Now aμ is
not divisible by p, so aα−μ would, if divided by p, give the residue
k contrary to the assumption. From this it follows that all the numbers
k, ak, a2k, . . . , aλ−1k or numbers derived from them are nonresidues.
Moreover, they are all different from each other and their number is
= λ; for if two of them, say aμk and aνk, divided by p were to give
the same residue r , then aμk = mp + r and aνk = np + r and thus
aμk − aνk = (m − n)p, or (aμ − aν)k = (m − n)p would be divisible
by p. Now k is not divisible by p, since we have assumed that p is a
prime number and k < p; then aμ − aν would have to be divisible by
p; or aμ−ν would give, divided by p, the residue 1, which is impossible
because μ < λ − 1 and ν < λ − 1; also μ − ν < λ. Therefore all the
numbers k, ak, a2k, . . . , aλ−1k, if reduced, will be different and their
number is = λ. Thus there exist at least λ numbers not belonging to the
residues so long as λ < p − 1. �

This is only the first 32 lines of the excerpt, in which the proof of Theorem 5.7 ends
on line 127; in other words, the remainder of Euler’s proof runs three times as long as
the part just presented. Part of the length can be attributed to the fact that Euler makes no
effort to be concise. But contemporary proofs also introduce concepts that streamline the
presentation, and it will be informative to consider how that works.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 71

Reverting to modern terminology, let G be the group of nonzero residues modulo p, and
let H = {1, a, a2, a3, . . . , aλ−1} be the subgroup generated by a, where now we take the
power operation modulo p. If k is any element of G, let Hk denote the coset {hk | h ∈ H},
that is, the set of elements of the form hk for some h ∈ H . Notice that Hk is a subset of G.

PROPOSITION 5.9. For any k, r ∈ G, if k �∈ Hr, then Hk ∩ Hr = ∅.

Proof. We prove the contrapositive. If g is an element of the intersection, then g =
h1k = h2r for some h1, h2 ∈ H . Multiplying by h−1

1 on the left, we obtain k = h−1
1 h2r ,

which is an element of Hr , since h−1
1 h2 ∈ H . �

PROPOSITION 5.10. For any k in G, the cardinality of the coset Hk is equal to the
cardinality of H, that is, |Hk| = |H |.

Proof. The map which sends any element h of H to hk is a bijection from H to Hk: it
is clearly surjective, and if h1k = h2k, then, multiplying both sides by k−1 on the right, we
have h1 = h2. �

PROPOSITION 5.11. The cardinality of H divides the cardinality of G.

Proof. Let g1 = 1. If Hg1 is not equal to all of G, pick an element g2 in G but not Hg1.
If Hg1 ∪ Hg2 is not all of G, pick an element g2 in G but not Hg1 or Hg2, and so on.
Since G is finite, eventually we obtain

G = Hg1 ∪ Hg2 ∪ Hg3 ∪ · · · ∪ Hgn

for some sequence g1, . . . , gn . We have shown that the sets Hg1, Hg2, . . . , Hgn are dis-
joint and each has cardinality |H |, so |G| = |H | · n. �

Theorem 5.7 now follows: since |G| = p − 1 and |H | = λ, assuming |G| = |H | · n we
have

a p−1 ≡ aλn ≡ (aλ)n ≡ 1n ≡ 1 (mod p).

It is often said that the proof I have just given is “implicit” in Euler’s proof. The passage
above is just the first step in his proof of Proposition 5.11: Euler shows that if k is not an
element of H , then H ∪ Hk has twice as many elements as H . An important difference be-
tween Euler’s proof and the refactored version is that the latter relies solely on properties of
the group operations—multiplication and the inverse function—while Euler’s calculations
rely on the details of this particular multiplication. This requires descending to the level of
powers of a, integer multiplication, the act of taking residues, and properties of congruence
modulo p. There is no notation for congruence, and Euler does not explicitly use properties
of divisibility; rather, the calculations are expressed in terms of the arithmetic operations
modulo p. As a result, properties that I highlighted at the start of this section as implicit in
Euler’s earlier proof are replayed in detail in this specific instance.

Notice that calculations in the refactored version of Euler’s proof are all carried out via
the group interface, which is to say, only generic properties of multiplication and inverses
are used, as sanctioned by the group axioms. As a result, Propositions 5.9–5.11 are true
of any group G and subgroup H , finite or not. Thus it establishes this much more general
fact, known as Lagrange’s theorem:

THEOREM 5.12. Let G be any finite group, and let H be any subgroup. Then the cardinality
of H divides the cardinality of G.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

72 JEREMY AVIGAD

In particular, for any element a of G, if we let H be the cyclic subgroup generated by
a, we obtain a|H | = 1. This is useful in contexts that have nothing to do with arithmetic,
but it also yields a generalization of Fermat’s theorem. For any integer n > 1, the residues
modulo n that are relatively prime to n (that is, share no nontrivial common factor) also
form a group, whose cardinality is now denoted ϕ(n). Euler’s argument establishes that,
more generally, if a is relatively prime to n, then aϕ(n) is congruent to 1 modulo n, a fact
that Euler made explicit in an article published two years later, in 1763. The result is now
known as Euler’s theorem, and the function ϕ is now known as the Euler ϕ function.

Another feature of the refactored proof is that it takes advantage of set-theoretic language
and notation that was not available to Euler and makes use of general set theoretic prop-
erties. For example, we make use of the fact that in order to show that the cardinalities of
two sets are equal, it suffices to show that there is a bijection between them. We also make
use of the fact that the cardinality of a union of a finite disjoint collection of finite sets
is the sum of their cardinalities. These are things that Euler does implicitly, but modern
terminology streamlines the argument by providing a clean library and interface to such
properties.

In sum, we have once again achieved the expected benefits of a modular development:
the individual components of the proof are easier to understand, verify, and adapt to other
purposes, and the results are more general, and reusable.

5.3. Historical examples. The goal of this section is to gesture toward some episodes
in the development of nineteenth century number theory where the effects of modularity
can be discerned. Studying the development of number theory is often illuminating, in
that there are many problems that can be stated in elementary terms, but whose solutions
require substantial mathematical machinery. It is informative to study the way that such
machinery—concepts invoked from analysis and algebra, for example—helps tame a dif-
ficult problem and make it manageable. Moreover, the historical record provides examples
of how proofs are revised and rewritten with the aim of making them easier to understand,
as well as with the aim of generalizing the results. Thus the development of number theory
provides excellent examples of refactoring, enabling us to discern the factors that guide the
process.

I will briefly discuss four problems in number theory that were present at the turn of
the nineteenth century: proving the law of quadratic reciprocity, classifying the binary
quadratic forms, proving that there are infinitely many primes in any arithmetic progression
in which the first term and common difference are coprime, and determining the asymp-
totic distribution of the prime numbers. The first two of these were solved by Gauss in
his Disquisitiones Arithmeticae of 1801, and the third was solved by Dirichlet in 1837.
The last problem was not solved until 1896, when Hadamard and de la Vallée Poussin,
independently, proved the Prime Number Theorem. Let us briefly consider each of these,
in turn, with an eye toward understanding how notions of modularity can help us make
sense of the historical developments.

The law of quadratic reciprocity is an identity that determines whether a prime p is a
perfect square modulo another prime q in terms of whether q is a perfect square modulo
p. Legendre claimed this result in 1785, but there was a gap in his proof which will be
discussed below. In Disquisitiones, Gauss pointed out the gap and claimed credit for being
the first one to give a complete proof of the result. In fact, he gave two proofs in Disqui-
sitiones, and published four additional proofs during his lifetime. Two more proofs were
found in his Nachlass. Since then, the aim of obtaining powerful generalizations of the law
of quadratic reciprocity has been a guiding theme in the development of modern number

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 73

theory, and the ability to obtain the law of quadratic reciprocity as an easy consequence of
a new theory has been seen to be a mark of success. In an appendix to his book, Reciprocity
Laws [26], Franz Lemmermeyer enumerated 236 published proofs of the theorem.

Thus the law of quadratic reciprocity is an example of refactoring par excellence. Some
of the proofs are only minor variants of each other, but the full range exhibits radically
different methods and ideas. Gauss’ original proof was a brute-force induction that is
singularly unilluminating. Some proofs invoke properties of the complex numbers, while
others use algebraic or geometric methods. In 1879, Dedekind showed how it could be
obtained from his new theory of ideals in an algebraic number field, which now forms
a core part of algebraic number theory. Thus the case study provides fertile ground for
understanding how different proofs manage and encode information.

A (binary) quadratic form is an expression of the form ax2 +bxy +cy2, where a, b, and
c are integers. A beautiful theorem due to Fermat is that a prime number p other than 2 can
be written as a sum p = x2 + y2 of two squares (that is, p = x2 + y2, where x and y are
integers) if and only if p is congruent to 1 modulo 4. This raises the more general problem
of characterizing the primes, and, moreover, all the integers that can be represented by a
quadratic form ax2 + bxy + cy2, in terms of the parameters a, b, and c.

In a tour de force, Gauss undertook a classification of binary quadratic forms in Chapter
5 of Disquisitiones, a chapter that is longer than the other six combined. To that end,
Gauss introduced a notion of composition of binary forms and used a long and exceedingly
difficult calculation to show that the composition law is associative. Harold Edwards writes

. . . perhaps the profoundest way in which [that chapter] affected the de-
velopment of mathematics lay in the challenge that it presented.
Starting with Dirichlet, and continuing with Kummer, Dedekind,
Kronecker, Hermite, and countless others, the unwieldy but fruitful
theory of composition of forms called forth great efforts of study and
theory-building that shaped modern mathematics. [21, p. 108]

Indeed, the development of the theory can be seen as a long process of refactoring and
reconceptualization. Today we interpret Gauss’ result as telling us that equivalence classes
of binary quadratic forms constitute a group under the composition law. Dedekind, with
his theory of ideals, was able to translate the problem to the study of the class group, a
group of equivalence classes in an algebraic number field related to the original binary
quadratic form. Historical information can be found in Cox, Primes of the Form x2 + ny2:
Fermat, Class Field Theory, and Complex Multiplication [16]. The literature on binary
quadratic forms is vast, and understanding how various approaches package and manage
information can illuminate the strategies that are used to situate a difficult mathematical
problem in a broader conceptual framework. Another interesting feature of the history is
that although the motivating problem has a computational character, various abstractions
pull away from and suppress computational information. Computational theories of binary
quadratic forms (see, e.g., [13]) aim to recapture algorithmic information, and it is im-
portant to understand how the computational theories interact with the conceptual ones.
The process of refactoring is still ongoing: quite recently, in fact, Manjul Bhargava has
identified Gauss’ composition law as an instance of a more general construction [11].

Our third example is Dirichlet’s theorem on primes in an arithmetic progression. When
Legendre tried to prove the law of quadratic reciprocity, he assumed that there are infinitely
many primes in any arithmetic progression a, a + d, a + 2d, . . . in which a and d have
no common factor. He did not prove this claim, however, and this is precisely the gap that

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

74 JEREMY AVIGAD

Gauss identified in Disquisitiones. Gauss was able to circumvent the assumption, but, in
fact, he was never able to prove it. It was Dirichlet who managed to do so, in 1837, with
a striking approach that combined novel algebraic ideas as well as sophisticated analytic
arguments. Rebecca Morris and I have studied the history of subsequent presentations and
reformulations of Dirichlet’s proof, over a 90-year period, with an eye toward understand-
ing the effects of these reconceptualizations [7, 8]. We show that, indeed, the historical
process can be naturally understood in terms of a drive to increase modularity.

Finally, consider the distribution of primes. The density of prime numbers among the
first n integers generally decreases as n increases. For example, four among the first ten
positive integers are prime but only 25 of the first 100. At the turn of the nineteenth century,
Gauss, on the basis of calculation, conjectured that the number of primes is asymptotic
to n/ log n in the limit, which is to say, the ratio of the two quantities approaches 1 as
n approaches infinity. In 1859, Bernhard Riemann established a connection between the
distribution of primes and the zeros of a complex-valued function now known as the
Riemann zeta function. Even with this crucial step forward, the result was not obtained
until 1896, when it was proved by Jacques Hadamard and Charles de la Vallée Poussin
independently. (There is a nice historical account in [20].)

Because the statement of the theorem involves a limit, the role of analysis in the proof
is perhaps not surprising. But the role of the complex numbers is intriguing: as with
any abstraction, here the methods of complex analysis serve to encapsulate certain bits
of information while making other information salient. Once again, a detailed study of
the way the mathematical definitions, theorems, and proofs serve to tame complexity
will help us understand how mathematical abstractions serve to support the reasoning
process.

§6. Conclusions. This exploration of modularity in mathematics has been broad and
programmatic, and more detailed work is needed to make the account fully satisfying.
Nonetheless, I hope that I have provided a framing of some of the issues that bear on the
development and normative assessment of mathematical resources that can help orient and
guide their study. In this final section, I will indicate some directions for future work and
summarize the central themes of this essay.

6.1. Modularity of method. As discussed in §2, we can model mathematical practice
on two levels. On the one hand, we have the fairly concrete syntactic data, the definitions,
theorems, proofs, conjectures, questions, and so on that make up the mathematical litera-
ture. In our discussions so far, the term “modular” is applied to objects of this sort. But to
make progress on questions related to the understanding of mathematics, we will have to
make sense of some of the less tangible complements of a syntactic body of knowledge,
namely, the concepts, methods, intuitions, and ideas that guide their use. It is far less
clear how to speak rigorously of these. A method, for example, seems to be some sort
of quasi-algorithmic entity that transforms one epistemic state to another, where the notion
of an epistemic state may perhaps be represented as some sort of quasi-syntactic entity. A
concept, like the group concept, may be viewed as a body of methods, clustered around a
central definition or notion. (See [3–5] for some thoughts along these lines.)

I will not make progress on refining such talk here but simply suggest that these more
amorphous objects of knowledge can be modularly structured as well. Methods (or abili-
ties, or capacities) seem to be compositional: we can explain the ability to solve a problem
in group theory in terms of the ability to invoke and apply relevant theorems, which in turn,
may invoke the ability to construct particular instances of groups to which the theorems are

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 75

applied. Insofar as methods are like algorithms, and algorithms are represented by code,
some of the things we say about modular code may transfer to talk of methods. Notions of
interface may help explain how appropriate methods are triggered and applied, and what
ensures that the results are not sensitive to the implementation. You and I can both carry out
algebraic calculations, and that may be sufficient for us to understand a particular proof,
even though we carry out the calculations in different ways.

If it does make sense to talk about modularity of the more dynamic components of
knowledge, one would expect modularity of method to track modularity of syntax. Insofar
as definitions, theorems, questions, and so on are (part of) the data on which our methods
operate, a modular structuring of methods will necessarily depend on a modular structuring
of the data.

6.2. Philosophical applications. In this section, I describe some of the ways in which
the study of modularity may interact with other lines of inquiry in the philosophy of
mathematics.

6.2.1. Representations. In cognitive science, psychology, and education, it is often
held that understanding and cognitive competence rely on having the right representations.
The notion is also a term of art in philosophy, playing a role in the philosophy of Descartes
and Kant, for example, and contemporary philosophy of mind [33].

In §5.2, we saw that Fermat’s Little Theorem can be expressed in various ways. Given
a prime, p, and an integer a not divisible by p, the conclusion can be expressed in any of
the following forms:

• There is an m such that a p−1 = mp + 1.
• a p−1 ≡ 1 mod p.
• a|Z∗

p | = 1 for any a ∈ Z∗
p.

(In the last expression, Z∗
p is the multiplicative group of nonzero residues modulo p.) It

seems that the best way to make sense of the differences between these representations
is to consider them against a backdrop of a modular structuring of knowledge, where
components of that body of knowledge interact with the representations in determinate
ways, with suitable interfaces to mediate the interactions. A representation is useless unless
one knows what to do with it; to paraphrase Kant, representations without interfaces are
blind.

6.2.2. Abstraction. Understanding mathematical resources via modularity can help us
understand the nature of abstraction, since specifying an interface is a way of characterizing
an object in terms of its essential properties rather than its representation.

6.2.3. Naturality. Tappenden [40] has suggested that mathematical definitions seem
to denote bona fide metaphysical entities rather than artificial or gerrymandered concepts
when those definitions prove to play a fruitful or even critical role in our theorizing. The
perspective offered here can provide an explanation of how they come to do so, namely, by
contributing to modules and interfaces that have the desired effects.

6.2.4. Generality. The notion of modularity helps solve another puzzle. The virtue
of introducing axiomatic and algebraic abstractions is usually attributed to their generality.
For example, Dedekind’s notion of an ideal, mentioned briefly in §5.3, has widespread uses
in number theory, algebraic geometry, and functional analysis. But every such abstraction
has to have an initial application, and unless that initial application yields an immediate
payoff, it is hard to see how the abstraction can get off the ground. It is sometimes the case
that algebraic abstractions are introduced to unify existing theories and results, abstract-
ing their common features. But not always: Dedekind introduced his theory of ideals to

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

76 JEREMY AVIGAD

improve on Kummer’s theory of ideal divisors and was clearly pleased with the results,
even before there were additional applications on the horizon. Indeed, it is often the case
that algebraic and axiomatic abstraction provide a useful means of simplifying and clar-
ifying a single proof or theoretical development. But that raises the question: is it just a
coincidence that the kinds of abstractions that make proofs and theories more understand-
able often give rise to components that are reusable and more generally applicable?

Modularity explains the phenomenon by attributing both the improved understandability
and the reusability to a common cause: the introduction of components with clear interfaces
that make salient the essential data in a certain line of reasoning and filter out extraneous
information. Doing so makes a proof easier to understand because there are less data to
process and key relationships are easier to discern. But it also yields concepts and results
that depend on fewer specific features of the context in which they are used, and hence are
reusable and more general.

6.2.5. Explanation. There are various attempts in the literature to clarify what it means
for a mathematical result to be explanatory. For example, Kitcher [25] takes explanation to
be theoretical unification, while Steiner [38] expects an explanatory proof to make use
of a “characteristic property” of an object mentioned in the theorem in a certain way.
(These and other approaches are nicely surveyed in [27].) Because such analyses rely on
structural notions of mathematical theories—the applicability of mathematical resources
across different contexts, or the variability of proofs with certain parameters—the accounts
may benefit from a clearer articulation of such structural notions.

6.2.6. Purity. Mathematicians sometimes express sentiments that promote certain
kinds of purity of method, for example, sentiments to the effect that an elementary theorem
should have an elementary proof, or that a geometric theorem should have a purely geomet-
ric proof. Andrew Arana and Michael Detlefsen have considered various notions of purity
and the associated epistemic benefits (for example, in [2, 18]). The approach offered here
may help clarify some of the claims. For example, the notion of purity explored in [18],
topical purity, demands that a proof draw on only those axioms and definitions that are
needed to determine the meaning of a theorem. Understanding the body of mathematics
in the terms proposed here may help make sense of what determines that meaning. For
example, notions of modularity can be used to screen out terms and facts that are deemed
incidental to a particular presentation.

6.3. Summary. I have argued that it is possible to transfer, in a meaningful way, con-
cepts and methods of analysis from the realm of software engineering to the philosophy of
mathematics. The transfer can be decomposed into two steps. Insofar as formal languages
used in interactive theorem proving are forms of computer code, notions from software
engineering make sense when applied to formal definitions, theorems, proofs, and the-
ories. And insofar as the latter reflect important features of their informal mathematical
counterparts, we can apply these notions to informal mathematics as well.

In particular, in computer science, modular structure is typically held to support under-
standability, reliability, the possibility of independent development, flexibility, and reuse.
Transferring notions of modularity to mathematics provides insight as to how these benefits
are achieved in that setting as well.

This perspective is largely orthogonal to traditional approaches to addressing ontological
and epistemological questions. In particular, it seems equally compatible with realist and
antirealist views of mathematics. But in addition to being independently valuable, a better
understanding of what we value in mathematics, and why, can inform traditional lines of
inquiry as well. For example, it can provide a more robust picture of how our mathematical

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 77

language deals with mathematical objects, and what it is about such objects that gives them
the air of reality.

There is still a lot of work to be done. One thing we can do is to continue analyzing the
data—the historical and contemporary record of mathematical practice—in terms of the
notions proposed here. At the same time, we need to develop better conceptual and logical
models, with more precise ways of analyzing the structure of mathematical artifacts and
assessing their epistemic value. Getting a grip on mathematical understanding will require
both philosophical analysis and careful attention to the mathematics itself, and so the two
approaches should go hand in hand.

§7. Acknowledgments. This work has been partially supported by Air Force Office
of Scientific Research MURI FA9550-15-1-0053 and National Science Foundation DMS-
1615444. Versions of this material were presented to a philosophy of mathematics seminar
run by Kenneth Manders at the University of Pittsburgh in 2014 and to the Current Issues in
the Philosophy of Practice of Mathematics and Informatics workshop in Toulouse in 2016.
I am grateful to both audiences for helpful discussions. I am especially grateful to Yacin
Hamami, Robert Lewis, Rebecca Morris, and David Waszek for comments, suggestions,
corrections, and a good deal of moral support.

BIBLIOGRAPHY

[1] Abelson, H. & Sussman, G. J. (1996). Structure and Interpretation of Computer
Programs (second edition). Cambridge, MA: MIT Press.

[2] Arana, A. (2008). Logical and semantic purity. Protosociology, 25, 36–48.
[3] Avigad, J. (2006). Mathematical method and proof. Synthese, 152(1), 105–159.
[4] Avigad, J. Understanding proofs. In Mancosu, P., editor. The Philosophy of

Mathematical Practice. Oxford: Oxford University Press, pp. 317–353.
[5] Avigad, J. (2010). Understanding, formal verification, and the philosophy of

mathematics. Journal of the Indian Council of Philosophical Research, 27, 161–197.
[6] Avigad, J. & Harrison, J. (2014). Formally verified mathematics. Communications

of the ACM, 57(4), 66–75.
[7] Avigad, J. & Morris, R. (2014). The concept of “character” in Dirichlet’s theorem

on primes in an arithmetic progression. Archive for History of Exact Sciences, 68(3),
265–326.

[8] Avigad, J. & Morris, R. (2016). Character and object. Review of Symbolic Logic, 9,
480–510.

[9] Baldwin, C. Y. & Clark, K. B. (1999). Design Rules: The Power of Modularity,
Vol. 1. Cambridge, MA: MIT Press.

[10] Barrett, H. C. & Kurzban, R. (2006). Modularity in cognition: Framing the debate.
Psychological Review, 113, 628–647.

[11] Bhargava, M. (2004). Higher composition laws. I. A new view on Gauss
composition, and quadratic generalizations. Annals of Mathematics, 159(1), 217–250.

[12] Bourbaki, N. (1950). The architecture of mathematics. The American Mathemati-
cal Monthly, 57(4), 221–232. Translated from the French by Arnold Dresden. The original
version appeared in F. Le Lionnais ed., Les grands courants de la pensée mathématique,
Cahiers du Sud, 1948.

[13] Buchmann, J. & Vollmer, U. (2007). Binary Quadratic Forms: An Algorithmic
Approach. Berlin: Springer.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

78 JEREMY AVIGAD

[14] Callebaut, W. & Rasskin-Gutman, D. (2005). Modularity: Understanding the
Development and Evolution of Natural Complex Systems. Cambridge, MA: MIT Press.

[15] Carruthers, P. (2006). The Architecture of the Mind: Massive Modularity and the
Flexibility of Thought. Oxford: Oxford University Press.

[16] Cox, D. A. (2014). Primes of the Form x2 + ny2: Fermat, Class Field Theory, and
Complex Multiplication. Hoboken, NJ: Wiley.

[17] de Moura, L., Kong, S., Avigad, J., van Doorn, F., & von Raumer, J. (2015). The
Lean theorem prover. In Felty, A. P., and Middeldorp, A., editors. Automated Deduction–
CADE-25, 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015. Cham, Switzerland: Springer International Publishing, pp. 378–388.

[18] Detlefsen, M. & Arana, A. (2011). Purity of methods. Philosophers’ Imprint, 11(2),
1–20.

[19] Dijkstra, E. W. (1982). On the role of scientific thought. In Dijkstra, E. W., editor.
Selected Writings on Computing: A personal Perspective. New York, NY: Springer, pp.
60–66.

[20] Edwards, H. E. (2001). Riemann’s Zeta Function. Mineola, NY: Dover
Publications Inc. Reprint of the 1974 original [Academic Press, New York].

[21] Edwards, H. E. (2005). Essays in Constructive Mathematics. New York: Springer.
[22] Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press.
[23] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.,

Mahboubi, A., O’Connor, R., Biha, S. O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., &
Théry, L. (2013). A machine-checked proof of the odd order theorem. In Blazy, S., Paulin-
Mohring, C., and Pichardie, D., editors. Interactive Theorem Proving. Lecture Notes in
Computer Science, Vol. 7998. Heidelberg: Springer, pp. 163–179.

[24] Harper, R. (2016). Practical Foundations for Programming Languages (second
edition). New York, NY: Cambridge University Press.

[25] Kitcher, P. (1989). Explanatary unification and the causal structure of the world.
In Kitcher, P. and Salmon, W., editors. Scientific Explanation. Minneapolis: University of
Minnesota Press, pp. 410–505.

[26] Lemmermeyer, F. (2000). Reciprocity Laws: From Euler to Eisenstein. Springer
Monographs in Mathematics. Berlin: Springer-Verlag.

[27] Mancosu, P. Mathematical explanation: Why it matters. In Mancosu, P., editor. The
Philosophy of Mathematical Practice. Oxford: Oxford University Press, pp. 134–440.

[28] Mancosu, P. (editor) (2008). The Philosophy of Mathematical Practice. Oxford:
Oxford University Press.

[29] Manders, K. Expressive Means and Mathematical Understanding, manuscript.
[30] Manders, K. The Euclidean diagram. In Mancosu, P., editor. The Philosophy of

Mathematical Practice. Oxford: Oxford University Press, pp. 80–133.
[31] Myers, G. J. (1978). Composite/Structured Design. New York: Van Nostrand

Reinhold.
[32] Parnas, D. L. (1972). On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12), 1053–1058.
[33] Pitt, D. (2012). Mental representation. In Zalta, E. N., editor. The Stanford

Encyclopedia of Philosophy. Available at https://plato.stanford.edu/archives/spr2017/
entries/mental-representation.

[34] Robbins, P. (2009). Modularity of mind. In Zalta, E. N., editor. The Stanford
Encyclopedia of Philosophy. Available at https://plato.stanford.edu/archives/win2017/
entries/modularity-mind/.

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

MODULARITY IN MATHEMATICS 79

[35] Robinson, J. A. & Voronkov, A. (editors) (2001). Handbook of Automated
Reasoning, Vol. 2. New York: Elsevier, and Cambridge, MA: MIT Press.

[36] Simon, H. A. (1962). The architecture of complexity. Proceedings of the American
Philosophical Society, 106(6), 467–482.

[37] Simon, H. A. (1997). Administrative Behavior (fourth edition). New York: Free
Press; First edition, New York: Macmillan, 1947.

[38] Steiner, M. (1978). Mathematical explanation. Philosophical Studies, 34,
133–151.

[39] Struik, D. J. (1969). A Source Book in Mathematics, 1200–1800. Source Books in
the History of the Sciences. Cambridge, MA: Harvard University Press.

[40] Tappenden, J. Mathematical concepts and definitions. In Mancosu, P., editor. The
Philosophy of Mathematical Practice. Oxford: Oxford University Press, pp. 256–275.

[41] Wirth, N. (1971). Program development by stepwise refinement. Communications
of the ACM, 14(4), 221–227.

DEPARTMENT OF PHILOSOPHY
CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PA 15213, USA
E-mail: avigad@cmu.edu

https://doi.org/10.1017/S1755020317000387 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020317000387

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

