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Abstract

Contrary to the common perception of hyperarid drylands as barren and lifeless, these regions are
home to some of the planet’s most unique biodiversity and support over 100 million people.
Despite their ecological and human significance, hyperarid drylands remain among the least
studied biomes in the world. In this article, we explore how improving our understanding of
hyperarid ecosystems in the Middle East can yield valuable insights applicable to other hyperarid
regions. We examine how ongoing greening initiatives in the Middle East offer a unique
opportunity to deepen our knowledge of dryland ecology and advocate for the establishment
of a comprehensive research program in the region. This program would focus on ecosystem
functionality across spatial and temporal scales, setting the stage for a global monitoring network
for hyperarid drylands. Such efforts would inform conservation strategies and climate change
mitigation, while also shedding light on the resilience and adaptability of hyperarid ecosystems
to environmental change. Ultimately, this monitoring would guide management practices to
preserve biodiversity, enhance ecosystem services and promote sustainable development in
hyperarid regions worldwide.

Hyperarid drylands, areas with an aridity index (precipitation/potential evapotranspiration) below
0.05, represent some of the most extreme environments on Earth. Despite the perception as being
inhospitable to life, they host a diverse set of biota and ecosystems, including rangelands that provide
grazing for nomadic tribes (Johnson, 1993), biocrusts that contribute to carbon sequestration
(Kidron et al., 2015) or coastal mangroves and salt marshes that support fisheries and modulate
nutrient cycling (El-Regal and Ibrahim, 2014). Encompassing an area of around 10 million km?, the
extent of hyperarid regions is expected to grow by the end of the century due to increasing aridity
driven by climate change. Current projections estimate the expansion of hyperarid land by 2050 to
range from 6% under moderate scenarios to as much as 12% in the most pessimistic scenarios
(Huang et al., 2016). While more than 100 million people currently live in hyperarid drylands (MEA,
2005), population growth rates as high as 65% by 2100 have been projected for developing countries
in these regions (Huang et al., 2016), placing further strain on these ecosystems.

Hyperarid ecosystems remain poorly studied compared to other dryland and nondryland
ecosystems (Brito et al., 2014; Smid et al., 2021). Research on their biodiversity, structure and
function is limited, representing less than 3% of all dryland studies (Groner et al, 2023).
These ecosystems are not only challenging to access (Ficetola et al., 2013) but also vastly under-
protected, with just 6.7% of their total area designated for conservation (Lewin et al., 2024). The
inaccessibility of hyperarid areas, coupled with the misconception that they are barren and devoid
of life, has resulted in their neglect of conservation efforts (Durant et al., 2012). Consequently,
there is a widespread but incorrect belief that these environments are either ecologically insig-
nificant or incapable of further degradation (Martinez-Valderrama et al., 2020). Contrary to this
view, hyperarid drylands are rich in biodiversity. For example, the Algerian Sahara alone is home
to at least 1,200 plant species (Ozenda, 2004). Due to the unique adaptations of organisms in these
extreme environments, hyperarid ecosystems offer valuable insights into how dryland systems
might respond to future climate change. They serve as natural laboratories for studying the
impacts of, and adaptations to, climatic change that could affect other dryland regions (Groner
et al,, 2023; Griinzweig et al,, 2022). Furthermore, as nondryland areas face increasing water
scarcity, mechanisms governing ecosystem functioning in drylands are expected to become
relevant in these regions (Allan et al., 2020). Many of these changes are anticipated in densely
populated regions, particularly in the subtropics and mid latitudes, with significant implications
for food production and societal well-being (Griinzweig et al., 2022). Beyond ecological insights,
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Box 1. Hyperarid drylands in the Middle East are much more than barren landscapes.

The Middle East is home to diverse ecosystems that, while also found in other regions under more favorable conditions, can thrive in some of the driest
environments on Earth. Gaining a deeper understanding of these ecosystems offers valuable insights into their functioning, restoration potential and relevance for
addressing climate change, land degradation and desertification. For instance, mangroves (1) along the coasts of the Red Sea and Arabian Sea (Almahasheer, 2018;
Blanco-Sacristan et al., 2022) are a key vegetation type in the Middle East. These ecosystems provide nursery grounds for marine life, support local communities
through commercial species and protect coastlines from erosion. However, mangroves in this region endure extreme saline stress due to limited freshwater inputs
and increasing groundwater extraction, on which they heavily rely (Adame et al., 2021). Additionally, these mangroves face significant human pressures
(Almahasheer et al., 2016). Understanding how mangroves survive in such arid conditions offers a unique opportunity to predict how global mangrove ecosystems
might respond to climate change, including the effects of human activities, sea-level rise and microclimatic shifts (Osland et al., 2016). Similarly, the grasslands (2) of
the Middle East, such as those in Iran’s Taftan mountains (Burrascano et al., 2018) and the southwestern Arabian Peninsula (Ghazanfar and Fisher, 1998), provide a
valuable opportunity to study the interactions between abiotic and biotic factors across altitudinal and latitudinal gradients. As global aridity increases,
understanding the dynamics of these grasslands — ranging from Mediterranean grasslands to semi-arid steppes — can offer crucial insights for improving grassland
health in other dryland regions. This is particularly important given the extreme climatic conditions in which these grasslands exist, which mirror those in many
other arid and semi-arid ecosystems globally, such as the grasslands in the Namib Desert (Evans et al., 2020; Logan et al., 2021) and Australia (Keast, 2013). By
studying how these Middle Eastern grasslands thrive, researchers can gain a deeper understanding of the resilience and adaptive strategies of grassland
ecosystems, crucial for managing the effects of climate change on grasslands worldwide. Shrublands (3), which dominate much of the Middle East — such as the
eastern Arabian Peninsula, parts of Jordan (e.g., Jebel Ajloun) and northern Israel (Upper Galilee) — also play a critical ecological role. They provide habitats for
insects and small rodents and host biocrusts — communities of photo- and heterotrophic organisms living on the soil surface in large, unvegetated drylands.
Biocrusts are essential for maintaining dryland ecosystem health by influencing soil respiration, nutrient cycling and runoff dynamics. While biocrusts have been
extensively studied in regions like the Negev Desert and the Arava Valley in Israel (e.g., Galun and Garty, 2003; Kidron and Tal, 2012), research across other Middle
Eastern countries is limited. Studies from countries like Iran (Bashtian et al., 2019), Iraq (Hamdi et al., 1978), Jordan (El-Oqglah et al., 1986), Oman (Abed et al., 2013)
and Saudi Arabia (Alotaibi et al., 2020) suggest that biocrust composition is relatively uniform across the region (Galun and Garty, 2003), but more research is
needed to fully understand their distribution and composition in the Middle East. With its long history of land use and anthropogenic impacts under climate change
(Kaniewski et al., 2012), the Middle East offers valuable insights into how human activities shape biocrust communities under extreme environmental conditions.
Studying the interactions between biocrusts and human-induced changes —such as grazing, agriculture and urbanization — can inform strategies for managing and
mitigating these impacts, both regionally and globally. Leveraging remote sensing technologies (e.g., satellites, drones and eddy-covariance towers) alongside in
situ data collection could enhance ecosystem surveys, providing timely insights into their functioning. This data could also support the establishment of new
monitoring networks, such as eddy covariance flux networks, which remain underrepresented in hyperarid drylands worldwide (Smith et al., 2019).
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studying the adaptations of organisms in hyperarid drylands holds
great promise for biotechnological and biodiversity applications
(Bull and Asenjo, 2013).

The Middle East accounts for over 30% of the world’s hyperarid
drylands. This region hosts diverse biomes that have developed
unique ecoevolutionary adaptations over thousands of years of
biotic and abiotic interactions. They support more than 8,000
unique species of vascular plants (Hegazy and Doust, 2016) and
encompass a diverse range of ecosystems present in other regions,
albeit under more favorable conditions. These ecosystems span from
mangroves along the coastal fringes of the Red Sea to grasslands and
shrublands extending across Turkey and Iraq (Box 1). Despite the
geographic and historical interest the Middle East has generated,
much of the research undertaken in this region has predominantly
focused on the description of the flora in individual countries,
such as Iran (e.g., Rechinger, 1963-2005), Israel and Palestine
(e.g., Danin, 2004; Zohary, 1962), Lybia (e.g., Jafri and El-Gadi,
1977-1993), Oman (e.g., Ghazanfar, 1992; Ghazanfar and Fisher,
1998), Saudi Arabia (e.g., Mandaville, 2013; Migahid, 1978), Turkey
(e.g., Davis et al., 1988, 1994) or Yemen (e.g., Brown and Mies, 2012;
Kilian et al,, 2002). Other studies described the vegetation of the
Middle East from geobotanical and phytogeographical perspectives
(e.g., Zohary, 1971, 1973). Similarly, the fauna of the Middle East has
drawn significant interest due to the extreme environmental condi-
tions these species endure, with several biodiversity hotspots in the
region. For example, the Arabian Peninsula hosts a high number of
endemic vertebrate species, 21.6% of which are unique to this region
(Mallon, 2011). Additionally, the Middle East serves as an essential
stopover for migratory bird species along major migratory routes
that connect Africa, Asia and Europe (Schekler et al., 2022). Coun-
tries like Israel have been extensively studied for their key role in bird
migration routes for decades already (e.g., Leshem and Yom-Tov,
1996). However, except for Hegazy and Doust (2016), the life stories
of many Middle Eastern species have not been comprehensively
investigated and described while concurrently considering this
region’s geography, plant evolution and ecology. Moreover, these
studies have yet to integrate the complex interactions between
human societies and ecosystems, particularly in the face of the
additional pressures imposed by climate change.

Here, we elaborate on how research on the biodiversity and
ecology of Middle East hyperarid drylands can advance our under-
standing of dryland ecosystems globally while also contributing to
the success of ongoing Saudi and Middle East Green Initiatives
(https://www.greeninitiatives.gov.sa/). With an initial investment
of more than USD 180 billion, these green initiatives aim to restore
degraded marine and terrestrial environments, enhance biodiversity
and mitigate the impacts of climate change throughout the Middle
East. We argue that if these initiatives are successfully developed and
implemented, they might serve as the foundation for further experi-
mental and theoretical studies on the impacts of extreme climates on
dryland ecosystems globally. Furthermore, the Saudi and Middle
East Green Initiatives could establish the base for applied solutions
aimed at preserving and/or rehabilitating the biodiversity and eco-
system services of global drylands, mitigating climate change and
addressing land degradation and desertification.

Ongoing greening initiatives in the Middle East: An untapped
potential to enhance our understanding of hyperarid
ecosystems

To sustain its unique biodiversity into the future, it is crucial to
promote the resilience and health of hyperarid ecosystems,
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particularly given the compound pressures of anthropogenic influ-
ence and climate change. These are key objectives of the Saudi and
Middle East Green Initiatives, which aim to protect up to 30% of
Saudi Arabia’s land and sea territories and plant up to 10 and
40 billion trees within the Kingdom and across the Middle
East, respectively (https://www.greeninitiatives.gov.sa/about-sgi/
and https://www.greeninitiatives.gov.sa/about-mgi/, respectively).
Other actions supported by these initiatives include the increase of
renewable energy capacity — which has already risen by 300% in
Saudi Arabia, restoring degraded lands — 94,000 hectares have been
rehabilitated across Saudi Arabia at the moment — and rewilding
endangered species that play a key role in the ecological balance of
these ecosystems. It is also expected that the Saudi Green Initiative
will play a significant role in achieving the recent commitment of
Saudi Arabia to reach net zero emissions by 2060, with the Middle
East Green Initiative aiding broader regional objectives towards
carbon neutrality. Moreover, the Saudi Green Initiative’s ambition
to protect at least 30% of Saudi Arabia’s territories by 2030 is in
harmony with the global “30x30” target adopted under the
Kunming-Montreal Global Biodiversity Framework of the Con-
vention on Biological Diversity (CBD, 2022). Although this is a
challenging objective, 18.1% and 6.49% of Saudi Arabia’s terrestrial
and marine areas are already protected.

Both greening initiatives will protect some of the region’s iconic
terrestrial fauna, which are classified at varying levels of threat,
ranging from vulnerable to critically endangered, according to the
International Union for Conservation of Nature (IUCN) Red List of
Threatened Species. Additionally, they will protect mangroves,
coral reefs and salt marshes, which have coevolved in this region
to create some of the most resilient marine ecosystems globally
(McCabe et al., 2023). Some of the Saudi Green Initiative activities
include the creation of national reserves, such as the King Salman
bin Abdulaziz Royal Reserve, located in the north of the Arabian
Peninsula. Covering approximately 130,000 km?, this reserve hosts
vulnerable species of mammals (e.g., Capra nubiana, Canis lupus
arabs) and birds (e.g., Torgos tracheliotos, Falco cherrug). Addition-
ally, urban areas are targeted by these initiatives. Cities like Riyadh
and Makkah in Saudi Arabia are seeing an increase in the number of
trees planted and the creation of new green areas, enhancing human
well-being and biodiversity (Cox et al., 2017; Gaston, 2010).

The Saudi and Middle East Green Initiatives should also learn
from past actions and seek not only to ecologically transform broad
landscapes but also to shape societies and economies. For example,
the Great Green Wall for the Sahara and the Sahel Initiative
(GGWSS), which emerged in 2007, involves over 20 countries
bordering the Sahara to establish plantations on 100 million ha
from Eritrea’s Red Sea coast to Senegal’s Atlantic coast (Sileshi et al.,
2023). The GGWSS was built upon earlier initiatives aimed at
combating desertification in the Sahel region’s countries (Mbow,
2017). One such initiative was Algeria’s Green Dam Initiative,
started in 1972, which aimed to establish a three million ha band
of plantations to halt the northward advance of the Sahara Desert
(Benhizia et al., 2021). Other projects, such as the Acacia operation
project and the Support for the rehabilitation and extension of the
Nouakchott green belt in Mauritania, engaged local communities
and national authorities in restoring inland and coastland ecosys-
tems (Berte, 2010). Projects in the Sahel region have shown that
where policies and incentives are favorable, farmers actively pro-
mote the natural regeneration of trees, resulting in vast areas now
being covered by trees (e.g., Haglund et al., 2011). A participatory
approach involves extensive community engagement and enhances
accountability and stewardship in land-restoration efforts. Initially,
a centralized approach, heavily reliant on forest department control
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and substantial investment in equipment, marginalized local com-
munities. Recognizing community ownership has enabled Sahelian
countries to mitigate conflicts between development and environ-
mental goals (Kumar, 2003). However, land privatization in the
Sahel often fails due to diverse landscape uses and stakeholder
needs (Schoneveld, 2017). These failures underscore the necessity
for stakeholder-supported, site-specific solutions that enable
ongoing improvement across countries and implementation sites.
Learning from experiences in the Sahel region, local actions that can
be scaled up with positive results include the zoning of grazing
areas, ensuring water availability for livestock and promoting fod-
der trees (Mbow, 2017).

In Asia, the Great Green Wall of China (GGWC), initiated by
the Chinese government in 1978, aims to combat desertification
and reduce the eolian transport of dust from the Gobi Desert
(Parungo et al, 1994). Scheduled for completion in 2070
(Lu et al., 2018), this project builds on China’s experience with
shelterbelt programs (Qi and Dauvergne, 2022). While the GGWC
has yielded benefits, such as reduced dust movement and increased
vegetation, during its first stages, many of the dryland areas targeted
for afforestation were found to be better suited for grasslands and
steppes than woodlands or forests (Cao et al., 2010; Matyas et al.,
2013), often leading to significant water pressures on water
resources (Li et al., 2021a). Not only tree survival rates were low
but also irrigation was necessary in drier areas within many of these
projects (e.g., Wang et al., 2020). Nevertheless, subsequent research
has demonstrated the benefits of shelterbelts in drylands for redu-
cing net erosion (Su et al,, 2021) and improving crop productivity
(Zheng et al., 2016). Additionally, studies on biocrusts in China’s
drylands have shown that breeding them can effectively control
land degradation (Li et al., 2021b) by reducing dust emissions and
increasing soil nutrient content (He et al., 2019; Li et al., 2010).
Because of these experiences, new strategies in China now focus on
science-based activities, encouraging natural regeneration, creating
multispecies plantations, matching species to local conditions and
emphasizing water conservation (Turner et al., 2023).

Over the past four decades, Australia has also made significant
advancements in restoring its drylands through sustained efforts
and community involvement (Campbell et al., 2017). Initiatives in
Australia learned from small-scale efforts and led to a shift in
policies towards large-scale activities, biodiversity conservation,
water quality improvement and greenhouse gas mitigation. Suc-
cessful restoration programs underscored community capacity and
commitment, yet it was also recognized that community efforts
alone were insufficient for sustainable resource management on a
landscape or continental scale without technically and economic-
ally viable land use and farming systems. These lessons are particu-
larly important in drylands, where synergistic interactions such as
grazing intensification, drought, climate change, reduced fire fre-
quency and changes in atmospheric chemistry or small animal
populations can collectively overwhelm the effects of individual
factors (Fu et al., 2021a).

Restoration in the Middle East cannot be based only on
planting trees in the desert

Ambitious tree-planting objectives are not a new concept, even in
drylands (Bond et al., 2019). Unfortunately, many previous dryland
afforestation efforts have often delivered tree monocultures, which
risks reducing sustainable development by negatively affecting eco-
system functioning (Yao et al., 2021). Apart from avoiding planting
regimes that are incompatible with the landscape, the inherent
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constraints of water availability in drylands and the increased pres-
sures that large-scale tree planting places on these, are critical
considerations when designing greening and restoration efforts
(Schwirzel et al.,, 2020). Although intrinsically appealing from a
policy perspective (i.e., planting trees is a socially recognizable and
acceptable climate action), excessive focus on afforestation using
trees can miss opportunities for broader and longer-term benefits.
For instance, mono-specific tree plantations may achieve a narrow
accounting-based objective (in terms of trees planted or carbon
captured) but they can reduce ecosystem diversity (e.g., Maestre
and Cortina, 2004), jeopardize water resources for humans and
ecosystems (e.g., Feng et al., 2016) and amplify the risk of future
carbon loss following any ecosystem disturbance (e.g., forest fires
and pests; Anderegg et al., 2020). In other parts of the world, regions
deemed degraded have been mistakenly considered as potential
areas for afforestation, simply by failing to carefully assess their
suitability for tree planting (e.g., soil health, environmental gradi-
ents). Such areas have included grasslands and shrublands
(Veldman et al., 2019), which represent two of the more common
environments found in the Middle East (Box 1; Hegazy and Doust,
2016).

Recognizing the limitations and unintended consequences of
prior afforestation strategies underscores the importance of adopt-
ing a more nuanced approach to ecosystem restoration, particularly
in hyperarid regions. Increased biodiversity is considered an indi-
cator of healthier and more resilient ecosystems, allowing faster
recovery from disturbance and providing ecosystem services that
contribute to more sustainable and stable human development
(Jactel et al., 2017). Thus, restoration and conservation efforts
should act in concert to increase biodiversity, thereby bolstering
the resilience of all naturally occurring ecosystems. This holistic
view is crucial if the goal is to restore the multifaceted ecosystems of
hyperarid lands, considering the variety of services they provide
(Box 1). For example, biocrusts are key players in dryland devel-
opment and function that increase soil carbon and nutrient con-
tents, impact multiple components of the hydrological cycle and
reduce soil erosion and dust emissions (Eldridge et al., 2020;
Rodriguez-Caballero et al., 2022), benefitting both the environment
and human societies. Therefore, the development of a biocrust
research program is urgently needed to understand their ecology,
distribution and potential to restore degraded habitats and mitigate
climate change in the Middle East.

Restoration and greening initiatives in the Middle East should
focus not only on what is visible above ground but also on soils.
Over 32% of the world’s soil organic pool is stored in drylands
worldwide (Plaza et al,, 2018a), with significant loss of carbon
occurring in major cropland and grazing areas (Sanderman et al.,
2017). However, although soils’ potential to mitigate climate
change has been long recognized (Bossio et al., 2020), their role
in dryland restoration and mitigation efforts remains underex-
plored. Soil organic carbon can act as a stable carbon sink, showing
resilience to land-use changes and disturbances, unlike above-
ground biomass. Carbon-rich soils also enhance water and nutrient
retention, enhancing ecosystem resilience to disturbances like
droughts (e.g., lizumi and Wagai, 2019). However, regional evalu-
ations of soil organic carbon in drylands remain limited, with
existing studies often producing inconsistent results (Fu et al.,
2021b). Furthermore, understanding the impact of land-use
changes on regional soil carbon is hindered by insufficient data
quality, poor representativeness and a lack of historical land-use
information (Hendriks et al., 2016). Comprehensive assessment of
soil carbon stocks requires robust sampling methods that can scale
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site-specific data to broader regional levels (Ciais et al., 2011), an
ongoing challenge in terrestrial carbon studies (Zhang and Harte-
mink, 2017). As such, a regional dataset combining soil organic
carbon, land-use and soil properties for the Middle East would
enhance our understanding of how climate influences physical
processes in global drylands. For instance, increasing aridity is
known to reduce soil carbon and nitrogen levels (Delgado-
Baquerizo et al., 2013) and disrupt the nutrient balance in dryland
soils (Maestre et al., 2016). Carbon accumulation in soils is influ-
enced by factors such as parent material, topography, microclimatic
conditions and species diversity (Ramesh et al., 2019), while human
activities can accelerate carbon emissions (Lal, 2004a; Schlesinger,
2000). Although improved management strategies (e.g., grazing
regimes, organic amendments, cover crops, crop rotation and
conservation tillage) can enhance carbon stocks in dryland soils
(Lal, 2004b, 2018; Plaza et al., 2018b), they can be less effective in
these environments due to their coarser texture and lower clay
content, which protects organic matter from decomposition
(Lehmann and Kleber, 2015; Six et al., 2002). It is, therefore, crucial
to evaluate the interactions between biotic, abiotic and human
factors to understand soil C dynamics in the Middle East.

Concluding remarks

Hyperarid lands have been largely missing from existing large-scale
global dryland field surveys (Maestre et al., 2012, 2022b). The Saudi
and Middle East Green Initiatives provide a unique opportunity to
gain insights into the processes that govern the structure, function-
ing and responses to climate change of hyperarid drylands. Know-
ledge gaps that need to be addressed include understanding: (i) the
drivers for the unexpected high functional diversity in dryland
plants (Gross et al.,, 2024); (ii) how plants will adapt to water
scarcity and respond to increased inter-annual precipitation vari-
ability (Garcia-Pichel and Sala, 2022); (iii) developing a region-
wide understanding of the distribution, characteristics and func-
tioning of biocrusts (e.g., Abed et al., 2019) and (iv) the mechan-
isms, both physiological and genetic, behind the ability of soil
microorganisms to endure extreme conditions (Makhalanyane
etal,, 2015). Further, many remote sensing-derived products ignore
hyperarid drylands based on the assumption that vegetation is
largely absent. As a result, hyperarid drylands are often excluded
from remote sensing products typically used in global studies and
vegetation estimates (e.g., Harris et al., 2021; Sabatini et al., 2022).
This is problematic, as vegetation (and trees in particular) is more
abundant in hyperarid areas than initially thought (Brandt et al.,
2020; Reiner et al.,, 2023). More generally, international networks
evaluating ecosystem carbon, water and energy fluxes, such as
FLUXNET (Baldocchi et al.,, 2001), lack sites in hyperarid envir-
onments, despite these representing around 8% of the global land
surface (Préavalie et al., 2019). Developing an augmented flux net-
work that includes sites in the Middle East would provide invalu-
able information on hyperarid drylands and contribute to filling
existing gaps in flux databases that preclude obtaining more precise
carbon cycling and climate change impact estimates.

Many of the actions discussed here will occur in complex and
unpredictable contexts, where human realities should be con-
sidered alongside ecological and biophysical factors. Drylands
exhibit sensitivity to changes in structure—function relationships
due to extreme climate conditions (D’Odorico and Bhattachan,
2012; Reynolds et al., 2007), and human interventions can alter
the resilience and stability of these systems (Robinson et al., 2015).
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Interactions between natural and human-induced processes affect
dryland dynamics at specific scales (Fu et al., 2021a), varying by
social, cultural and economic context (Stringer et al., 2017). There-
fore, understanding the complex and adaptive nature of drylands in
the Middle East should involve dynamic interactions between its
ecosystems and human societies (Folke et al., 2016), requiring
interdisciplinary efforts (Bautista et al., 2017).

Research in the Middle East should focus on the interplay
between ecosystem services and human well-being to optimize
services that enhance drylands’ health and human well-being in
the long term (Fu et al., 2021b). Identifying local limiting factors
and their impacts can improve knowledge of ecosystem functioning
and livelihoods through sustainable development (Reed et al., 2015;
Turner et al,, 2003). An interdisciplinary approach, which evaluates
ecological and social perspectives together, will allow for assessing
ecological dynamics and their driving forces in the Middle East. It
will not only enable an understanding of the macroscopic differ-
ences among various dryland systems in this region but also help
identify management or policy responses likely to deliver successful
outcomes in different types of drylands (Fu et al., 2021b).

Developing a comprehensive research program on ecosystem
structure and functioning across multiple spatio-temporal scales in
the Middle East is a critical step to provide the scientific underpin-
ning needed for the success of ongoing green initiatives and climate
change and desertification mitigation actions in this region. The
creation of a Middle East collaborative network of researchers,
practitioners and decision-makers, and the set-up of standardized
regional surveys using standardized protocols following models
successfully implemented in other large-scale and global surveys
(e.g., Maestre et al., 2022a; Maestre and Eisenhauer, 2019), would be
a fundamental step forward towards achieving this aim. Doing so
would not only be key to creating the basis for long-term monitor-
ing of ecosystem changes in the region but would provide us with
invaluable insights to advance our understanding of hyperarid
drylands and to better comprehend and react to the increasingly
drier conditions being experienced and forecasted across the globe.
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