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Abstract
Pay-how-you-drive (PHYD) or usage-based (UB) systems for automobile insurance provide actuaries
with behavioural risk factors, such as the time of the day, average speeds and other driving habits.
These data are collected while the contract is in force with the help of telematic devices installed in
the vehicle. They thus fall in the category of a posteriori information that becomes available after
contract initiation. For this reason, they must be included in the actuarial pricing by means of
credibility updating mechanisms instead of being incorporated in the score as ordinary a priori
observable features. This paper proposes the use of multivariate mixed models to describe the joint
dynamics of telematics data and claim frequencies. Future premiums, incorporating past experience
can then be determined using the predictive distribution of claim characteristics given past history.
This approach allows the actuary to deal with the variety of situations encountered in insurance
practice, ranging from new drivers without telematics record to contracts with different seniority and
drivers using their vehicle to different extent, generating varied volumes of telematics data.
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1. Introduction

The classical approach to motor insurance pricing can be summarised as follows (see Denuit et al.
2007, for an extensive presentation). The claim frequency is often the main target in actuarial
pricing, both from an “a priori” perspective (supervised learning model including policyholder’s
characteristics as well as information about his or her vehicle and about the type of coverage
selected, among others) and from an “a posteriori” perspective based on credibility models (mixed
models linking past to future claims, inducing serial dependence with the help of random effects
accounting for unexplained heterogeneity), sometimes simplified into a bonus-malus scale for
commercial purposes.
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Technological advances have now supplemented these classical risk factors with new ones,
reflecting the policyholder’s actual behaviour behind the wheel. Telematics is a branch of
information technology that transmits data over long distances. Examples of telematics data
include the global position system (GPS) data and the in-vehicle sensor data. The main source for
such data is the automotive diagnostic system (or OBD, for On-Board Diagnostics) installed in
the vehicle, or the driver’s smartphone. We refer the reader to Boucher et al. (2013) and Tse-
lentis et al. (2017) for reviews of current practices and emerging challenges in usage-based (UB)
motor insurance pricing.

Telematics insurance data offer the opportunity to base actuarial pricing on actual policyholder’s
behaviour. With pay-how-you-drive (PHYD) or UB motor insurance, premium amounts are based
on the total distance travelled, the type of road, the time of the day, average speeds and other driving
habits. Thus, premiums are based directly on driver’s behaviour behind the wheel. Several insurance
companies have launched pilot projects to market new products with such innovative premiums,
especially towards young, inexperienced drivers.

UB actuarial pricing ties the amount of insurance premium to the risk level associated with the
actual driving behaviour of the policyholder. For instance, if increased mileage and speeding are
associated with larger expected claim frequencies then they result in a higher insurance pre-
mium. This system of variable premiums offers an alternative to the current system of fixed
insurance premiums exclusively based on proxies for risk such as age and gender, rather than on
the actual driving behaviour of policyholders. UB pricing can integrate a multitude of risk
factors, including distance travelled (annual mileage) and driving style (speeding or non-fluent
driving, i.e. frequent acceleration and deceleration, for instance), as well as other factors (e.g.
time of driving).

Contrarily to standard risk factors, such as age, gender or place of residence, telematics data
evolve over time in parallel to claim experience, progressively revealing the actual behaviour of
the policyholder behind the wheel. The information contained in past telematics data differs
between individuals. For newly licensed drivers, no record is available. For those observed over
the past, telematics data are available for the time they were subject to the UB system which may
vary among policyholders. Moreover, the reliability of the information is also heterogeneous.
Indeed, telematics data are recorded while the policyholders are driving, and some of them
regularly use their car (providing a rich information about their driving habits) whereas other
ones use their car to a much lesser extent (resulting in limited volume of telematics data). In
order to get the multivariate dynamics across insurance periods, past telematics data should not
be included in the score like ordinary risk factors but must preferably be modelled jointly with
claim experience. This is exactly the purpose of credibility models (also called mixed models, in
statistics), except that here they apply to a random vector joining telematics data and claim
experience. The approach proposed in this paper provides the actuary with a powerful alter-
native to the inclusion of behavioural traits as additional features in supervised learning (e.g.
Baecke & Bocca, 2017; Ayuso et al., 2018; Verbelen et al., 2018; Jin et al., 2018) or the
unsupervised classification of driving styles into a few categories that can then supplement
traditional risk factors in supervised learning (e.g. Weidner et al., 2016, 2017; Wüthrich, 2017;
Gao et al., 2018).

The approach proposed in this paper is illustrated by means of a real driving data recorded by GPS
over three calendar years. These data relate to the portfolio of a Spanish insurance company offering
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UB motor insurance to young drivers. The information available is a panel that describes yearly
claim numbers and the driving patterns for each driver. The driver’s habits are summarised into three
signals recorded thanks to telemetry: in addition to the number of kilometers driven in each year, the
insurer collects information on the number of kilometers driven at night, the number of kilometers
driven in an urban area, and the number of kilometers driven at excess speed. Annual mileage is
considered as an exposure to risk and as such enters the multivariate models as an offset. The signals
are treated as entire numbers, by rounding excess speed, night-time driving and urban driving in
natural units and a multivariate mixed Poisson model is used to describe their joint dynamics,
together with yearly claim counts.

The remainder of this paper is organised as follows. Section 2 describes multivariate credibility
models for random vectors joining signals and claim counts. This approach is applied to a real data
set in Section 3, and the results are compared with those obtained according to the classical actuarial
approach. Section 4 discusses the results and briefly concludes the paper.

2. Multivariate Credibility Model

2.1. Mixed poisson model for annual claim frequencies

Consider an insurance portfolio comprising n policies observed during several periods. Let Nit be the
number of claims reported by policyholder i, i=1,2,…,n, during period t, t=1,2,…,Ti. Compared to
classical actuarial studies dealing with annual periods, insurers using telematics data generally work
with shorter time periods, like a quarter or a month.

At the beginning of each insurance period, the actuary has at his disposal some information about
each policyholder summarised into p features xitj that may evolve over time. The a priori information
xit= (xit1,…,xitp)

Τ is recorded in the data basis under consideration. Resorting to standard regression
(or supervised learning) machinery, this information is integrated into the prediction of the annual
expected number of claims, or claim frequency. Specifically, define

xit = features for policyholder i; i=1; ¼;n;

during period t; t=1; 2; ¼;Ti

dit = exposure-to-risk; distance driven in kilometers

ηit = ηðxitÞ
= score for policyholder i in period t

λit = dit expðηitÞ= exp lndit + ηitð Þ:

Adding ln dit to the score ηit (i.e. treating this quantity as an offset) means that the insurer’s price list
is expressed per kilometer, and varies according to traditional risk features included in the vector xit.
The score ηit can be calibrated by means of any Poisson regression technique, ranging from basic
generalised linear models (GLM) to sophisticated machine learning algorithms.

A random effect Δi is added to the score ηit to recognise the residual heterogeneity of the portfolio.
We refer to Denuit et al. (2007) for more details about this classical construction. In this paper, we
assume that the residual effect of all unknown characteristics relating to policyholder i is represented
by a random variable Δi. The numbers of claims Ni1, Ni2, Ni3,… are then assumed to be independent
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given Δi. The latent unobservable Δi characterises the correlation structure of the claim countsNit for
each policyholder i. Specifically, the model is based on the following assumptions:

A1 given Δi= δ, the random variables Nit, t=1, 2,…, are independent and conform to the Poisson
distribution with mean

λit expðδÞ= expðln dit + ηit + δÞ;

which is henceforth denoted as Nit � Poiðλit expðδÞÞ. Formally,

P½Ni1 =k1; ¼ NiTi =kTi j Δi = δ�=
YTi

t =1

P½Nit = kt j Δi = δ�

=
YTi

t =1

expð�λit expðδÞÞ ðλit expðδÞÞ
kt

kt !

 !
:

A2 at the portfolio level, the sequences (Δi, Ni1, Ni2,…) are assumed to be independent.

A3 the random effects Δi are independent, Normally distributed with zero mean and constant
variance σ2Δ.

When the canonical log link function is used in the Poisson regression model, as assumed here,
assumption A3 amounts to using a Poisson-LogNormal model for claim counts. Contrarily to what
is generally assumed in the actuarial literature, where the random effects Δi are supposed to be such
that E½expðΔiÞ�= 1, the statistical literature devoted to mixed models assumes that the random effects
Δi are centred. Under assumption A3, we then have E½expðΔiÞ�= expðσ2Δ =2Þ according to the for-
mula giving the mathematical expectation for the LogNormal distribution. Therefore, the latter
factor has to be included in the calculation of the a priori expected number of claims (with a linear
score ηit, the intercept of the regression model has thus to be modified accordingly). Formally, the a
priori expected number of claims is equal to

E½Nit�=E E½Nit j Δi�½ �= λitE½expðΔiÞ�= λit expðσ2Δ = 2Þ:

Remark 2.1 If longer panels are available then the static random effects Δi can be replaced with
dynamic ones Δi1, Δi2,… which discount past observations according to their seniority. This is easily
done by replacing Δi with a random sequence Δi1, Δi2,… obeying a Gaussian process whose
covariance structure accounts for the memory effect (AR1, for instance).

2.2. Single behavioural variable, or signal

In order to predict the number of claims Nit filed by policyholder i during period t, let us assume that
the insurer has a signal Sit at its disposal about the policyholder’s behaviour behind the wheel during
the same period. This unique signal summarises all the information collected by means of telematic
devices installed in the vehicle. For commercial purposes, it may be preferable to use a unique signal
as premium updating formulas are more compact and easier to understand (in the next section,
several signals will be used simultaneously).
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To refine risk evaluation, we now combine past claims experience with the available signal. Hence,
each contract is represented by the sequence

ðΔi;Γi;Ni1; Si1;Ni2; Si2;Ni3; Si3; ¼ Þ
where

Δi accounts for hidden information influencing claim frequencies Nit

Γi reects the quality of driving revealed by the observed signal Sit.

It is important to realise here that signals are also influenced by traditional risk factors included in xit
so that we need to account for this effect in model design. Here is a possible model specification in
case of a Gaussian signal Sit (notice that even if the initial signal does not obey the Gaussian
distribution, it can easily be transformed to meet approximately this condition): we supplement
assumptions A1-A3 stated in Section 2.1 with

A4 Given Δi, the counts Ni1, Ni2,… are independent and independent of Γi, Si1, Si2,….

A5 Given Γi, the signals Si1, Si2,… are independent and independent of Δi, Ni1, Ni2,…, and

Sit = νit +Γi +Eit

where νit is the signal score based on a priori features xit, Γi is Normally distributed and represents
the additional information contained in the signal about claim frequencies, corrected for the effect of
the features xit whereas the Normally distributed error terms Eit represent the noise comprised in the
observed signal Sit which do not reveal anything about claim counts. We also make the following
assumptions about the dependence structure of these random variables

(a) The random variables Γi;Ei1; Ei2; ¼ are mutually independent.

(b) The random variables Ei1; Ei2; ¼ are independent from (Δi, Ni1, Ni2, Ni3,…).

A6 Given Δi and Γi, all the observable random variables Ni1, Si1, Ni2, Si2,… are independent.

From assumptions A4–A6, we see that only the Γi component involved in the signal Sit is relevant to
predict claim frequencies: we assume that the pair (Δi, Γi) is normally distributed, with zero mean
vector and its covariance drives the corrections brought by signals in the evaluation of future
expected number of claims.

Continuous signals are certainly appealing as many embarked devices produce real measures.
Another approach consists in recording a number of events, or to round a continuous signal in
multiples of a natural unit. This makes the mechanism more transparent, at the cost of a negligible
loss of accuracy.

If the signal counts a number of events then A4–A6 above are replaced with

A4 Given Δi, the claim counts Ni1, Ni2,… are independent and independent of Γi, Si1, Si2,….

A5 Given Γi, the signal counts Si1, Si2,… are independent and independent of Θi, Ni1, Ni2,…, and

Sit � Poi dit expðνit +ΓiÞð Þ:
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where νit is the signal score based on a priori features xit and Γi is Normally distributed with zero
mean and represents the additional information contained in the signal about claim frequencies. The
noise present in the observed signal Sit is now represented by the Poisson error structure.

A6 Given Δi and Γi, all the observable random variables Ni1; Si1;Ni2; Si2; ¼ are independent.

Assumptions A4–A6 are in line with the traditional actuarial approach to experience rating, in that
they postulate that the dependence between signal and claim counts is only apparent and results from
missing information. If we had a complete knowledge of policyholder’s characteristics, i.e. if we
knew Δi, then the signal would not be needed for pricing. Because of limited knowledge about
policyholder’s driving style, the insurer uses the information contained in the signal that reveals the
missing elements in expected claim counts. This is why the signal is separated into three components:
the effect νit of the available features xit, the relevant information Γi contained in the signal, that may
explain expected claim counts beyond the available xit, and the random noise Eit. The correlation
ρΔ;Γ between Δi and Γi can be exploited to improve the estimation of the expected number of claims
by combining observed signal values with past claims history.

Notice that claim counts Nit and signal values Sit are correlated by means of the pair ðΔi;ΓiÞ of
random effects. For a signal consisting in a mixed Poisson count, this is easily seen as follows:

C½Nit; Sit�=C E½Nit j Δi;Γi�;E½Sit j Δi;Γi�½ �

because the conditional covariance is zero by virtue of A6. Hence,

C½Nit; Sit�= d2
it expðηit + νitÞC expðΔiÞ; expðΓiÞ½ �:

Now, as the pair ðΔi;ΓiÞ is jointly Normal, with zero mean, variances σ2Δ and σ2Γ, and correlation
ρΔ;Γ, we get

C expðΔiÞ; expðΓiÞ½ �=E expðΔi +ΓiÞ½ ��E expðΔiÞ½ �E expðΓiÞ½ �

= exp
σ2Δ + σ2Γ

2

� �
ðexp ρΔ;ΓσΔσΓ

� ��1Þ

which is not zero unless ρΔ;Γ = 0, that is, unless Δi and Γi are mutually independent (so that the signal
brings no information about the claim counts).

2.3. Multiple signals

Assume that q signals, denoted as SðjÞit , j= 1; 2; ¼ ; q, are available in addition to the p features
comprised in xit. In case several signals are available, the insurer may either combine them into a
single one and proceed as explained above. A natural approach would consist in using a linear

combination of the signals for instance, and to work with the unique, composite signal
Pq
j= 1

αjS
ðjÞ
it for

appropriate weights αj (determined so to maximise the correlation with the observed claim counts
Nit). Another possibility is to extend the model from the preceding section to the multivariate case by
assuming a specific dynamics for each signal as explained next.

In case of multivariate Normally-distributed signals, we supplement assumptions A1–A3 with
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A4 Given Δi, claim counts Ni1;Ni2; ¼ are independent and independent of ΓðjÞ
i ; SðjÞi1 ; S

ðjÞ
i2 ; ¼ for

j= 1; 2; ¼ ; q.

A5 Given ΓðjÞ
i , the signals SðjÞi1 ; S

ðjÞ
i2 ; ¼ are independent and independent of Δi;Ni1;Ni2; ¼, and

admit the representation

SðjÞit = ν
ðjÞ
it +ΓðjÞ

i +EðjÞ
it

where νðjÞit is the score for the jth signal based on a priori features xit, Γ
ðjÞ
i is Normally distributed with

zero mean and represents the additional information contained in the jth signal about claim fre-
quencies, corrected for the effect of the features xit whereas the Normally distributed error terms EðjÞ

it

represent the noise comprised in the observed signal which do not reveal anything about claim
counts.

We also make the following assumptions about the dependence structure of these random variables:

- The random variables ΓðjÞ
i ;E

ðjÞ
i1 ;E

ðjÞ
i2 ; ¼ are mutually independent.

- The random variables EðjÞ
i1 ;E

ðjÞ
i2 ; ¼ , j= 1; 2; ¼ are mutually independent.

- The random variables EðjÞ
i1 ;E

ðjÞ
i2 ; ¼ are independent from ðΔi;Ni1;Ni2;Ni3; ¼ Þ.

- The random vector ðΔi;Γ
ð1Þ
i ;Γð2Þ

i ; ¼ ;ΓðqÞ
i Þ is multivariate Normally distributed with zero mean

vector and variance-covariance matrix Σ.

A6 Given ðΔi; Γ
ð1Þ
i ; Γð2Þ

i ; ¼, ΓðqÞ
i Þ, all the observable random variables Ni1; S

ð1Þ
i1 ; Sð2Þi1 , ¼ ,

Ni2; S
ð1Þ
i2 ; Sð2Þi2 ; ¼ are independent.

The random vectors ðΔi; Γ
ð1Þ
i ; Γð2Þ

i ; ¼ ;ΓðqÞ
i Þ are independent and all obey the same Normal dis-

tribution. The covariance structure drives the corrections induced by the signals on future expected
claim counts. We acknowledge here that the multivariate Normal assumption may appear to be
restrictive in some applications because it constrains the dependence structure (prohibiting tail
dependence, for instance). Other multivariate distributions, such as Elliptical ones can be useful to
model the dependency of the signals, and a copula construction can be employed to this end.

If the signals consist in counts of different events then assumptions A1–A3 are supplemented with

A4 Given Δi, claim counts Ni1; Ni2; ¼ are independent and independent of ΓðjÞ
i ; SðjÞi1 ; S

ðjÞ
i2 ; ¼ for

j= 1; 2; ¼, q.

A5 Given ΓðjÞ
i , the signal counts SðjÞi1 ; S

ðjÞ
i2 ; ¼ are independent and independent of Δi; Ni1; Ni2; ¼,

and

SðjÞit � Poi dit expðνðjÞit +ΓðjÞ
i Þ

� �
where νðjÞit is the score for the jth signal based on a priori features xit and ΓðjÞ

i is Normally distributed
with zero mean and represents the additional information contained in the jth signal about claim
frequencies, corrected for the effect of the features xit. Also, the random vector
ðΔi; Γ

ð1Þ
i ; Γð2Þ

i ; ¼, ΓðqÞ
i Þ is multivariate Normally distributed with zero mean vector and variance-

covariance matrix Σ.
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A6 Given ðΔi; Γ
ð1Þ
i ; Γð2Þ

i ; ¼ΓðqÞ
i Þ, all the observable random variables Ni1; S

ð1Þ
i1 ; Sð2Þi1 , ¼,

Ni2; S
ð1Þ
i2 ; Sð2Þi2 ; ¼ are independent.

Of course, the insurer could use a blend of continuous and integer signals so that many variants to
the models proposed above can be envisaged.

2.4. Credibility updating formulas

In addition to accounting for overdispersion and serial correlation, the random effects

ðΔi;Γ
ð1Þ
i ; Γð2Þ

i ; ¼, ΓðqÞ
i Þ

allow for credibility updates. In the classical actuarial approach based on claim counts, only, past
numbers of claims enter the credibility formulas in addition to observable features xi;Ti +1 to explain
Ni;Ti +1. Formally, the experience used to revise future premiums relates to past claims history

Hclaim
i;Ti

= fNit; t= 1; ¼ ;Tig:
This information enters the predictive distribution, i.e. the conditional distribution of Ni;Ti +1 given
Hclaim

i;Ti
. With experience rating, the a priori expectation

E½Ni;Ti +1�= λi;Ti + 1E½expðΔiÞ�
is replaced with the a posteriori expectation

E½Ni;Ti + 1 j Hclaim
i;Ti

�= λi;Ti +1E½expðΔiÞ j Hclaim
i;Ti

�:
The pricing structure is slow to adapt in personal lines because the λit are generally small.

With telematics and IoT, the past claims history Hclaim
i;Ti

can be enriched with behavioural data. This
allows the pricing structure to become much more reactive but requires the development of multi-
variate credibility models. In this case, the policy-specific history Hi;Ti gathers all the a posteriori
information

Hi;Ti =Hclaim
i;Ti

∪H
signals
i;Ti

= fNit; S
ð1Þ
it ; ¼ ; SðqÞit ; t= 1; ¼ ;Tig:

The multivariate mixed/credibility model describes the joint dynamics of Nit; S
ð1Þ
it ; ¼ ; SðqÞit , given a

priori features xit. The predictive distribution now corresponds to the conditional distribution of
Ni;Ti +1 given Hi;Ti . The a priori expectation is replaced with an a posteriori one

E½Ni;Ti +1 j Hi;Ti �= λi;Ti +1E½expðΔiÞ j Hi;Ti �:
The factor E½expðΔiÞ j Hi;Ti � =E½expðΔiÞ� is the credibility correction, i.e. the ratio between the a
posteriori and the a priori expected numbers of claims.

3. Case Study

3.1. Presentation of the data set

In order to illustrate the approach proposed in Section 2, we perform a case study based on real
driving data recorded by GPS, collected by a Spanish insurance company within the framework of a
new form of insurance cover. Under such policies, motor insurance premiums are determined by
taking into account not only the traditional risk factors but also the number of kilometers driven in a
given period of time as well as information on the number of kilometers driven at night, the number
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of kilometers driven in an urban area, and the number of kilometers driven at excess speed. The
information available is a panel that describes yearly records on the number of claims and the driving
patterns for each driver measured thanks to telemetry.

Excess speed, night-time driving and urban driving are considered to be signals of the type of driving
habits or skills. We treat these signals as entire numbers, by rounding excess speed, night-time
driving and urban driving in natural units of 500 km. Specifically, the three signals at our disposal
are as follows:

Sð1Þit = distance travelled in the night ðinmultiples of 500 kilometersÞ

Sð2Þit = distance driven above the speed limit ðinmultiples of 500 kilometersÞ

Sð3Þit = distance travelled in urban zones ðinmultiples of 500 kilometersÞ:

The joint dynamics of the number of claims Nit filed by policyholder i during period t and the three
signals SðjÞit , j= 1; 2; 3, will be exploited to predict the future number of claims. To this end, we use the
modelling approach proposed in Section 2.3.

Notice that these are not compositional data in the sense of Verbelen et al. (2018). Such data model
percent exposure and they have to cope with the restriction that percentages need to add up to 100%
at the policyholder level. Here, the sum of the distances used as signals does not necessarily match the
total distance travelled. Data on the total distance driven per year (in kilometers) is considered as an
exposure to risk and as such enters our models as an offset. To avoid large dispersion, distance
driven is expressed in hundreds of kilometers.

Let us briefly comment on the choice of these three signals. Night-time driving is usually associated to
more accidents than day-time, especially at young ages (see, for instance, Williams, 1985), and the
first signal captures this effect. As pointed out by Bolderdijk et al. (2011), vehicle speed is commonly
considered as the major determinant of crash risk for young adults. Specifically, these authors
demonstrated that reducing the amount of time spent above the speed limit, holds the potential of
dramatically reducing accidents. This is exactly the information captured by the second signal, time
being here measured by the actual distance driven above the speed limits (integrating the total
distance travelled by means of offset). Notice that the signal excess speed records the number of
kilometers travelled at a speed in excess of the posted limit. However we do not have enough
information to include the amount of excess, so we cannot distinguish between a driver who drives
10% faster or 20% than the posted limit. Finally, we note that urban areas are often congested and
crash risk is higher there than in sub-urban or rural zones, because of heavy traffic. The third signal
records the distance travelled in the accident-prone urban areas.

3.2. Descriptive statistics

The sample is made up of n= 2; 494 insured drivers followed over the three calendar years 2009–
2011. All policyholders have been observed for three years (so that Ti = 3 for all i). The mean age of
all drivers in the sample in 2009 is 25.17 years (standard deviation 2.44). In the participating
insurance company, the policies that involve collecting telematics information are only offered to
young drivers (the maximum age in the sample being 30 years). Our sample comprised 51.60% of
male drivers and 48.40% of female drivers.
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In Table 1, we present descriptive statistics for telematics data observed in the sample for each year.
It is worth stressing that distance driven dropped the last year. However, since we have distance
driven as an offset in our model, we predict the expected number of claims per mileage, and therefore
this is automatically corrected in the analysis.

Our yearly responses are the number of claims, and then the number of count units of excess speed,
night-time driving and urban driving (rounded in 500 s km). Our measure of exposure-to-risk is the
distance driven measured as a continuous variable in 100 s km. Figure 1 shows four histograms of
the raw telematics data in 2009. This helps to figure out the sample distribution of the total distance
travelled as well as of the three signals entering the analysis.

Table 2 presents the counts information for the 3 years and the four counts once the signals of speed,
night-time and urban are transformed in discrete counts in units of 500 s km. We can see there that
the majority of claim counts as well as night-time and speed signals concentrate in low-frequency
cells, whereas the counts of the signal urban are located in a higher frequency level. The information
in Table 2 indicates that 2,004 drivers did not claim any accident in 2009 (2,038 and 2,091 in 2010
and 2011, respectively). In 2009, one policyholder claimed as much as six accidents, while the
maximum number of claims was four in 2010 and 2011. A few policyholders recorded high levels of
speed limit excess in 2009 and even a bit more in 2010.

Table 1. Sample statistics for raw telematic information by year (n= 2; 494).

Year: 2009 Year: 2010 Year: 2011

Total distance
Min 1.06 80.61 17.54
Mean 14,062.39 13,475.16 7,170.96
Median 12,777.59 12,070.94 6,404.03
(IQR) (8,342.37, 18,590.10) (7,934.84, 17,662.90) (4,064.64, 9,375.69)
Max 53,412.06 56,360.86 36,101.56
Km night
Min 0.00 0.00 0.00
Mean 923.24 1,011.26 527.73
Median 579.00 611.00 298.00
(IQR) (235.25, 1,202.50) (242.00, 1,290.00) (112.00, 698.75)
Max 10,989.00 11,494.00 6,526.00
Km speed
Min 0.00 0.00 0.00
Mean 1,564.76 1,547.05 560.81
Median 834.50 769.00 258.50
(IQR) (343.25, 1,848.75) (324.25, 1,879.25) (106.00, 632.75)
Max 18,160.00 23,500.00 11,836.00
Km urban
Min 1.00 45.00 0.00
Mean 3,122.52 2,871.50 1,483.40
Median 2,803.00 2,590.50 1,345.50
(IQR) (1,903.00, 3,947.25) (1,755.00, 3,637.00) (875.00, 1,923.00)
Max 15,519.00 14,732.00 6,462.00
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3.3. Association between signals and claim counts

We focus specifically on the three signals SðjÞit because we expect a clear association between claims
and excess speed, night-time driving and urban driving. We treat total driving distance as a total
exposure offset. There is an extensive literature on how all these factors are associated to claiming.
Ayuso et al. (2016, 2018) showed that information on speed excess, night-time driving and urban
driving improves the prediction of the number of claims, compared to classical models not using
telematics information. Guillen et al. (2018) provide an extended overview on how accumulated
distance driven shows evidence that drivers improve their skills, a phenomenon that is known as the
“learning effect.”

All this previous knowledge is the reason why we focus specifically on variables that reflect the
driving habits, such as excess speed, night driving and urban driving, and for which we expect a
clear association with the number of claims as well as distance driven. Let us now investigate the
strength of this association on our data set. Figure 2 shows a correlation between the distance

Figure 1. Histograms of telematic information recorded in 2009 (n= 2; 494).
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and the three raw indicators (speed, night-time, urban) in 2009–2011. Just by illustration in
Figure 3, we also show the correlation between distance driven in the three observed years.
As expected, distance driven correlates with the signals and between consecutive years.
Notice that no correction has been made for standard risk factors at this stage so that the

Table 2. Counts of claims and driving signals (expressed in 500 s km) in 2009, 2010 and 2011.

Year: 2009 Year: 2010 Year: 2011

Claims Night Speed Urban Claims Night Speed Urban Claims Night Speed Urban

0 2,004 652 461 18 2,038 640 473 17 2,091 1,131 1,227 59
1 370 825 705 74 350 793 755 97 318 799 732 415
2 95 428 422 181 92 409 371 199 71 298 242 642
3 18 229 234 252 11 230 231 306 11 126 113 616
4 4 133 175 343 3 128 156 381 3 69 60 368
5 2 73 102 339 91 109 367 27 41 191
6 1 49 72 309 60 83 299 19 22 94
7 28 66 272 39 67 256 11 25 56
8 27 43 183 31 38 169 6 9 27
9 14 40 147 27 38 123 3 7 10
10 10 33 102 13 32 76 2 7
11 12 15 76 6 27 50 4 5 5
12 4 12 52 6 14 53 3 2
13 2 25 45 8 21 30 1 2 2
14 3 17 20 3 12 19 1
15 1 11 25 4 4 16
16 1 8 15 2 11 10 1
19 1 4 5 4 1 1
20 1 3 9 3
22 1 5 1 4 1
17 6 11 1 9 5
18 8 5 1 4 12
21 6 3 1 3 3
23 2 2 1 5 2
24 2 1 1 1
25 3 1 1 1
26 1 5
27 3 1
28 1 1
29 3 1 1
31 1 1 1
32 1 2
33 2 3
35 1 1
36 1
30 1
34 1
38 1
41 1
47 1
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correlation may only be apparent, being generated by the confounding effects of the standard
risk factors comprised in xit. The multivariate credibility model will precisely avoid this possible
pitfall.

3.4. Fitted models

Here, we assume that the joint dynamics of ðNit; S
ð1Þ
it ; Sð2Þit ; Sð3Þit Þ, t= 1; 2; ¼ , is described by the

multivariate mixed Poisson model described in Section 2.3. Such mixed Poisson models are
particular cases of Generalised Linear Mixed-effects Models (or GLMM). The glmer function
included in the R package lme4 can be used to fit a GLMM which incorporates both fixed-effects
parameters and random effects in a linear predictor, via maximum likelihood. The multivariate
Poisson-LogNormal model for claim and signal counts considered in the present section was
fitted using the glmer function which performs Poisson regression with structured random
effects.

Figure 2. Correlation matrix of telematic information recorded in 2009–2011 (n=2; 494).
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The expression for the likelihood of a mixed-effects model involves an integral over all the random
effects. In our case, the likelihood associated to the observations ðnit; sð1Þit ; sð2Þit ; sð3Þit Þ, t =1; 2; 3, writes

L=
Yn
i=1

ð1
�1

ð1
�1

ð1
�1

ð1
�1

Y3
t=1

 
exp �dit expðηit + δÞð Þ dit expðηit + δÞð Þnit

nit !

Y3
j= 1

exp �dit expðνðjÞit + γjÞ
� � dit expðνðjÞit + γjÞ

� �sðjÞit
sðjÞit

0BB@
1CCA
1CCAfPðδ; γ1; γ2; γ3Þdδdγ1dγ2dγ3

where fΣ is the joint probability density function of the random vector ðΔi;Γ
ð1Þ
i ;Γð2Þ

i ;Γð3Þ
i Þ, corre-

sponding to the assumed multivariate Normal distribution with zero mean vector and variance-
covariance matrix Σ. For a GLMM, the integral must be approximated with the help of quadrature
formulas. Let us mention that to achieve convergence, some care is needed and appropriate control
parameters must be selected in relation with the nonlinear optimiser. To ensure numerical stability of
the optimisation algorithms, policyholder’s age has been rescaled (divided by 100). Gender is coded
as 1 for male drivers and as 0 for female drivers. Also, different units have been tested for the three
signals (in 100 and 1,000 km, without affecting the results).

Both fixed effects and random effects are specified via the model formula. The multivariate model
considers claim counts and the three signals simultaneously. We fit the multivariate model at once
following the approach proposed by Faraway (2016, Section 9.3). The idea is to define count and
signal identifiers by means of a categorical feature signalName with four levels, N, S1, S2 and S3,
say, treated as fixed effects and to introduce an interaction between the signals and the other fixed
effects, as well as corresponding four-dimensional policyholder-specific random effects. In order to
get four correlated random effects between claim counts and the three signals, we need to specify the
random effect structure as (-1 + signalName|id) where id denotes the policy identifier (allowing the
actuary to track the same contract over time) entering model formula.

Figure 3. Correlation matrix of distance driven in 2009–2011 (n= 2; 494).
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To illustrate the relevance of the approach proposed in this paper, we compare the multivariate credibility
model described above, including past claims history as well as the three signals, with a classical cred-
ibility model, based on claim counts only. More precisely, we fit univariate mixed Poisson models for
panel data, separately for each signal and the number of claims. The results for the univariate models can
be considered as those obtained by replacing the covariance matrix Σ with a diagonal one, with marginal
variances along the main diagonal. In the univariate modelling, the four responses Nit, S

ð1Þ
it , Sð2Þit and Sð3Þit

are thus considered to be mutually independent (but serial dependence for fixed i is taken into account in
all four cases). In the univariate approach (i.e. considering claim counts, or each signal, in isolation), the
random effects are included by means of the component (1|id) entering model formula. In this case, only
past claim experience is used to update the expected number of claims in future years.

Table 3 presents the results of the univariate and the multivariate counts models (estimated with the
3-year panel 2009–2011). The difference between the univariate approach and the multivariate
approach is that the former only considers one of the signals at a time and it completely ignores the
association between them. However, the reason to introduce a multivariate framework is that, for
instance a claim in 2009 can influence the driver in such a way that he or she drives more carefully in
2010 in terms of excess speed and even in the total distance. This phenomenon had been noted
before (see Guillen and Pérez-Marín, 2018) but it had not been studied in the way it is done here.

We see that age has an overall effect that is negative, meaning that the older the driver the less claims
are expected. Here we chose a linear effect because the interval of ages is small for this sample of
young drivers and we could not find a non-linear association. We also tried interactions between age
and gender, but again we could not find significant cross-effects.

The joint dynamics of the number of claims Nit filed by policyholder i during period t and the three
signals Sð1Þit , Sð2Þit and Sð3Þit is as follows. In the multivariate modelling, the correlation structure and the
serial dependence are both taken into account for the four responsesNit, S

ð1Þ
it , Sð2Þit , and Sð3Þit : precisely,

given centred, multivariate Normally-distributed random effects ðΔi;Γ
ð1Þ
i ;Γð2Þ

i ;Γð3Þ
i Þ, the responses

Table 3. Model results for panel data on claims and driving count signals, 2009–2011.

Univariate models

Multivariate Models S1 (Night) S2 (Speed) S3 (Urban) Claims

(Intercept) −5.08(0.29)*** −4.33(0.14)*** − 3.31(0.15)*** − 2.34(0.09)*** − 4.99(0.31)***

S1 (Night) 0.76(0.32)
*

S2 (Speed) 1.78(0.32)***

S3 (Urban) 2.47(0.28)
***

Age −5.21(1.13)
*** − 1.33(0.55)* − 4.27(0.61)*** − 3.29(0.36)*** − 5.95(1.22)***

Gender − 0.11(0.06) 0.38(0.03)*** 0.22(0.04)*** 0.03(0.02) −0.09(0.06)
S1 (Night):Age 3.84(1.25)**

S2 (Speed):Age 0.76(1.29)

S3 (Urban):Age 3.02(1.11)**

S1 (Night):Gender 0.49(0.07)***

S2 (Speed):Gender 0.34(0.07)***

S3 (Urban):Gender 0.14(0.06)***

���p< 0:001, ��p< 0:01, �p< 0:05.
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are Poisson distributed with respective conditional means

E½Nit j Δi�= dit exp �5:08�5:21agei�0:11I½genderi =male� +Δið Þ

E½Sð1Þit j Γð1Þ
i �= dit expðð�5:08 + 0:76Þ + ð�5:21 + 3:84Þagei

+ ð�0:11 + 0:49ÞI½genderi =male� +Γð1Þ
i Þ

E½Sð2Þit j Γð2Þ
i �= dit expðð�5:08 + 1:78Þ + ð�5:21 + 0:76Þagei

+ ð�0:11 + 0:34ÞI½genderi =male� +Γð2Þ
i Þ

E½Sð3Þit j Γð3Þ
i �= dit expðð�5:08 + 2:47Þ + ð�5:21 + 3:02Þagei

+ ð�0:11 + 0:14ÞI½genderi =male� +Γð3Þ
i Þ:

The estimated fixed effects are coherent between the multivariate and univariate models so that the
estimated scores bηit and bνðjÞit are very similar in both cases. The main advantage of the multivariate
model is to estimate the covariance matrix Σ of the random vector ðΔi;Γ

ð1Þ
i ;Γð2Þ

i ;Γð3Þ
i Þ which connects

claim counts Nit to corresponding signals ðSð1Þit ; Sð2Þit ; Sð3Þit Þ.

The estimated covariance matrix bΣ is as follows. The marginal standard deviations are estimated tobσΔ = 0:836

bσΓ;1 = 0:521

bσΓ;2 = 0:753

bσΓ;3 =0:438:

The estimated correlation coefficients are given bybρΔ;Γ;1 = 0:019

bρΔ;Γ;2 =�0:204

bρΔ;Γ;3 = 0:602

bρΓ;1;2 = 0:026

bρΓ;1;3 = 0:058

bρΓ;2;3 =�0:484:

We see that signal 1 (night-time driving) brings little information about claim counts in our data
basis. The effects of signals 2 and 3 clearly dominate with respective correlations of about 20% and
60%, exhibiting opposite signs. Signal 3 (urban driving) appears to be the most informative, and
negatively correlated to signal 2 (excess speed). This can be explained by traffic congestion, reducing
speed in urban areas. On our data set, the estimated correlation between Δi and Γð2Þ

i appears to be
negative. This can be attributed to the way excess speed has been recorded in the data basis, without
distinctions between small and large violations of the posted speed limit.
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3.5. A posteriori corrections

The multivariate model does not outperform the classical, univariate one on aggregate. This is easily
seen from Table 3, by noticing that the estimated fixed effects are very similar for the claim count
component of the multivariate model and the univariate model for claim counts, only. In fact, a
simple Poisson GLM with an intercept would produce predicted numbers of claims close to the
observed ones (provided the portfolio experience is stationary) both at the portfolio level and within
sub-portfolios. This comes from the marginal totals constraints imposed by the likelihood equations.
The added value of the multivariate model proposed in this paper consists in refined individual
premium corrections, as explained next.

The credibility approach consists in predicting the number of claims for next year using the con-
ditional distribution of the response given past experience. Here, past experience gathers the
observed numbers of claims filed in the past for the univariate model. In the multivariate case, it also
includes the history of the three signals. Approximations for the predictions can be obtained using
large-sample results such as formula (3.21) on page 151 of Wood (2017) giving the a posteriori, or
predictive distribution of the estimated regression coefficients and random effects (used in the ranef
function of glmer that extracts the conditional modes of the random effects from the fitted model).
Here, we prefer to implement exact formulas for a posteriori expectations in the proposed
credibility model.

The expected number of claims Ni;Ti +1 to be filed by policyholder i in year Ti + 1 given past numbers
of claims Nit = kit, t= 1; 2; ¼ ;Ti, and past values of signals SðjÞit = lðjÞit , t= 1; 2; ¼ ;Ti, j= 1; 2; 3, can
be obtained as follows. As random effects are static, past experience is more conveniently sum-
marised into the statistics

ki =
XTi

t =1

kit and lðjÞi =
XTi

t=1

lðjÞit :

Also, we define
λi =

XTi

t =1

λit =
XTi

t=1

expðlndit + ηitÞ and μðjÞi =
XTi

t =1

expðln dit + ηðjÞit Þ:

Then, E½Ni;Ti +1 j Ni1 = kit; S
ðjÞ
it = lðjÞit ; t= 1; 2; ¼ ;Ti; j= 1; 2; 3�

=E½Ni;Ti +1 j Ni1 + ¼ +NiTi = ki; S
ðjÞ
i1 + ¼ + SðjÞiTi

= lðjÞi ; j=1; 2; 3�

=di;Ti +1 expðηi;Ti +1ÞE½expðΔiÞ j Ni1 + ¼

+NiTi = ki; S
ðjÞ
i1 + ¼ + SðjÞiTi

= lðjÞi ; j=1; 2; 3�

=di;Ti +1 expðηi;Ti +1Þ
A
B

where
A= ðki + 1Þ

ð1
�1

ð1
�1

ð1
�1

ð1
�1

exp �λi expðδÞð Þ expðδÞð Þki +1

Y3
j=1

exp �μðjÞi expðγjÞ
� �

expðγjÞ
� �lðjÞi !

fPðδ; γ1; γ2; γ3Þdδdγ1dγ2dγ3

B=
ð1
�1

ð1
�1

ð1
�1

ð1
�1

exp �λi expðδÞð Þ expðδÞð Þki
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Y3
j=1

exp �μðjÞi expðγjÞ
� �

expðγjÞ
� �lðjÞi !

fPðδ; γ1; γ2; γ3Þdδdγ1dγ2dγ3:

The updating coefficient is thus given by A =B. The integrals involved in A and B can be computed
numerically with quadrature formulas as implemented in the R package MultiGHQuad.

In the univariate case, we simply get the ratio of two Mellin transforms:

E½Ni;Ti +1 j Ni1 = kit; t =1; 2; ¼ ;Ti�=E½Ni;Ti +1 j Ni1 + ¼ +NiTi = ki�

=di;Ti +1 expðηi;Ti +1ÞE½expðΔiÞ j Ni1 + ¼ +NiTi = ki�

= di;Ti +1 expðηi;Ti + 1Þ
C
D

where
C= ðki + 1Þ

ð1
�1

exp �λi expðδÞð Þ expðδÞð Þki +1fσ2ΔðδÞdδ

D=
ð1
�1

exp �λi expðδÞð Þ expðδÞð Þki fσ2ΔðδÞdδ

where fσ2Δ is the probability density function of the Normal distribution with zero mean and variance
σ2Δ.

Let us now demonstrate the added value of the multivariate model by computing individual premium
corrections. The boxplots of the values of E½expðΔiÞ j Hi;3� based on the multivariate model
involving the three signals and of the values of E½expðΔiÞ j Hclaim

i;3 � based on the univariate model
(i.e. the classical credibility construction based on the Poisson-LogNormal model for claim counts)
are displayed in Figure 4. Apart from the common increasing trend according to the number of
claims Ni1 +Ni2 +Ni3 filed during the observation period, we see that there is more dispersion in the
E½expðΔiÞ j Hi;3� values compared to the E½expðΔiÞ j Hclaim

i;3 � values, because of the variety in the
signal.

Let us now compare the values of E½expðΔiÞ j Hi;3� based on the multivariate model involving the
three signals to the values of E½expðΔiÞ j Hclaim

i;3 � obtained from the univariate model for claim
counts, only, according to the total number of claims Ni1 +Ni2 +Ni3 filed during the observation
period. The numerical values are displayed in Figure 5. For claim-free policyholders, we see that the
univariate model always grants a discount whereas its multivariate counterpart may impose a
penalty, depending on the experience with signals. When a single claim is reported, both univariate
and multivariate models may still award a discount or induce a penalty. For the univariate model, it
depends on the a priori features of the driver (a priori riskier drivers are less penalised when a claim is
reported to the company). For the multivariate model, it depends on the a priori features as well as
on the experience recorded on signals. When two claims are reported, the univariate model always
imposes a penalty whereas its multivariate counterpart may still award a discount, based on
favourable experience related to signals. When three claims (or more) are reported, both the uni-
variate and multivariate models impose a penalty, but its extent also depends on the signals in the
multivariate case.

Let us now consider a male policyholder with average age and driving the average annual distance.
Also, we fix the signals 1 and 2 at their average value, but we let the third signal vary from 0 to its
maximal value given the assumed total mileage. Based on the number of claims reported during the
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three years, we compute the a posteriori corrections to assess the impact of the signal. The results are
displayed in Figure 6. For a policyholder without claim (Ni1 +Ni2 +Ni3 = 0), we see that having a
better driving style (small value of the signal) increases the discount compared to the classical
credibility correction based on past claims, only (represented by the horizontal line on the graph).
For a policyholder having reported a single claim, (Ni1 +Ni2 +Ni3 =1), we see that depending on the
value of the signal, the premium may increase or decrease (whereas it moderately increases using the
classical credibility formula). Hence, the signal can compensate for the effect of a single claim. When
two or three claims are reported, the policyholder suffers a penalty whatever the value of the signal,
but the latter can attenuate the penalty compared to the classical credibility model based on past
claim experience, only.

4. Discussion

The approach proposed in this paper recognises the a posteriori nature of telematics data and their
variety among insured drivers. The multivariate credibility model developed in the case study cap-
tures the association between signals and claim counts, allowing the actuary to refine risk evaluations
based on past history.

Bonus-malus scales, which have now become a popular experience rating scheme in motor insur-
ance, have been proposed to insured drivers in the 1960s. On a voluntary basis, attracting the best
drivers, before becoming compulsory. We refer the reader to Lemaire (1995) for the history of this a
posteriori pricing mechanism. The UB motor insurance premium systems could develop similarly.

Considering adverse selection in the vein of Rotschild and Stiglitz, individuals partly reveal their
underlying risk through the contract they chose, a fact that has to be taken into account when setting
an adequate tariff structure. In the presence of unobservable heterogeneity, low risk insurance
applicants have interest to signal their quality, by selecting UB insurance cover for instance. As
pointed out by Tselentis et al. (2017), a gradual global transition towards UB insurance can therefore
be envisaged. Low-risk drivers (low-mileage, less risky drivers, etc.) will first opt out of traditional
insurance in favour of insurance policies with UB premium calculation. Consequently, behavioural

0 claim 1 claim 2 claims 3 claims

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A

 p
os

te
rio

ri 
co

rr
ec

tio
ns

0 claim 1 claim 2 claims 3 claims

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
 p

os
te

rio
ri 

co
rr

ec
tio

ns

Figure 4. Boxplots of the values of E½expðΔiÞ j Hi;3� based on the multivariate model (left panel)
and of E½expðΔiÞ j Hclaim

i;3 � (right panel) obtained from the univariate model, according to the
total number of claims Ni1 +Ni2 +Ni3 filed during the observation period.
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aspects of driving are likely to be incorporated in insurance models in order to contribute towards
current trends of personalised vehicle insurance.

As claims remain rare events, the standard credibility models appear to be relatively inefficient in
personal insurance lines. They are even sometimes perceived as unfair by insured drivers. On the
contrary, behavioural characteristics are recorded on a continuous basis, and remain for the most
part under drivers’ control. Premium amounts are differentiated to reflect safety, by charging higher
fees for unsafe road categories and night-time driving, for instance. Moreover, insured drivers can
adapt their driving style to make the amount of UB insurance premium decrease. In that respect, they
appear to be superior both from an actuarial point of view (more accurate risk evaluation) and
societal goal (promoting safer driving habits and decreasing traffic congestion). In this way, UB
actuarial pricing also serves as a mechanism to raise drivers’ awareness and improve their driving
behaviour.
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Figure 5. Values of E½expðΔiÞ j Hi;3� based on the multivariate model and of E½expðΔiÞ j Hclaim
i;3 �

obtained from the univariate model, according to the total number of claims filed during the
observation period: Ni1 +Ni2 +Ni3 = 0 (top left), Ni1 +Ni2 +Ni3 =1 (top right), Ni1 +Ni2 +Ni3 = 2
(bottom left), and Ni1 +Ni2 +Ni3 =3 (bottom right).
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Figure 6. Values of E½expðΔiÞ j Hi;3� for an hypothetical male, mean-aged driver in function of
the distance travelled in urban areas, based on the multivariate model and of E½expðΔiÞ j Hclaim

i;3 �
obtained from the univariate model, according to the total number of claims filed during the
observation period: Ni1 +Ni2 +Ni3 = 0 (top left), Ni1 +Ni2 +Ni3 = 1 (top right), Ni1 +Ni2 +Ni3 = 2
(bottom left), and Ni1 +Ni2 +Ni3 = 3 (bottom right).

Michel Denuit et al.

398

https://doi.org/10.1017/S1748499518000349 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000349


References
Ayuso, M., Guillen, M. & Pérez-Marín, A.M. (2016). Telematics and gender discrimination: Some

usage-based evidence on whether men’s risk of accidents differs from women’s. Risks, 4, 10.
Ayuso, M., Guillen, M. & Nielsen, J.P. (2018). Improving automobile insurance ratemaking using

telematics: incorporating mileage and driver behaviour data. Transportation, in press.
Baecke, P. & Bocca, L. (2017). The value of vehicle telematics data in insurance risk selection

processes. Decision Support Systems, 98, 69–79.
Bolderdijk, J.W., Knockaert, J., Steg, E.M. & Verhoef, E.T. (2011). Effects of Pay-As-You-Drive

vehicle insurance on young drivers’ speed choice: Results of a Dutch field experiment. Accident
Analysis and Prevention, 43, 1181–1186.

Boucher, J.P., Pérez-Marín, A.M. & Santolino, M. (2013). Pay-as-you-drive insurance: The effect
of the kilometers on the risk of accident. Anales del Instituto de Actuarios Españoles, 19,
135–154.

Denuit, M., Marechal, X., Pitrebois, S. & Walhin, J.-F. (2007). Actuarial Modelling of Claim
Counts: Risk Classification, Credibility and Bonus-Malus Systems. Wiley, New York.

Faraway, J.J. (2016). Extending the Linear Model with R: Generalized Linear, Mixed Effects and
Nonparametric Regression Models, 2nd edition. CRC, Boca Raton, FL.

Gao, G., Meng, S. & Wuthrich, M.V. (2018). Claims frequency modeling using telematics car
driving data. Available at SSRN https://ssrn.com/abstract=3102371.

Guillen, M., Nielsen, J.P., Ayuso, M. & Pérez-Marín, A.M. (2018). The use of telematics devices to
improve automobile insurance rates. Risk Analysis, accepted (in press).

Guillen, M. & Pérez-Marín, A.M. (2018). The contribution of Usage-Based data analytics to
benchmark semi-autonomous vehicle insurance. In Mathematical and Statistical Methods for
Actuarial Sciences and Finance (pp. 419–423). Springer.

Jin, W., Deng, Y., Jiang, H., Xie, Q., Shen, W. & Han, W. (2018). Latent class analysis of accident
risks in usage-based insurance: evidence from Beijing. Accident Analysis and Prevention, 115,
79–88.

Lemaire, J. (1995). Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publisher,
Boston.

Tselentis, D.I., Yannis, G. & Vlahogianni, E.I. (2017). Innovative motor insurance schemes: a review
of current practices and emerging challenges. Accident Analysis and Prevention, 98, 139–148.

Verbelen, R., Antonio, K. & Claeskens, G. (2018). Unravelling the predictive power of telematics
data in car insurance pricing. Journal of the Royal Statistical Society: Series C (Applied Sta-
tistics), 67, 1275–1304.

Weidner, W., Transchel, F.W.G. & Weidner, R. (2016). Classification of scale-sensitive telematic
observables for risk individual pricing. European Actuarial Journal, 6, 3–24.

Weidner, W., Transchel, F.W. & Weidner, R. (2017). Telematic driving profile classification in car
insurance pricing. Annals of Actuarial Science, 11, 213–236.

Williams, A.F. (1985). Nighttime driving and fatal crash involvement of teenagers. Accident Analysis
and Prevention, 17, 1–5.

Wüthrich, M.V. (2017). Covariate selection from telematics car driving data. European Actuarial
Journal, 7, 89–108.

Wood, S.N. (2017). Generalized Additive Models: An Introduction with R, 2nd edition. Chapman
and Hall/CRC, Boca Raton, FL.

Multivariate credibility modelling for usage-based motor insurance pricing

399

https://doi.org/10.1017/S1748499518000349 Published online by Cambridge University Press

https://ssrn.com/abstract=3102371
https://doi.org/10.1017/S1748499518000349

	Multivariate credibility modelling for usage-based motor insurance pricing with behavioural�data
	1.Introduction
	2.Multivariate Credibility Model
	2.1.Mixed poisson model for annual claim frequencies
	2.2.Single behavioural variable, or signal
	2.3.Multiple signals
	2.4.Credibility updating formulas

	3.Case Study
	3.1.Presentation of the data set
	3.2.Descriptive statistics

	Table 1Sample statistics for raw telematic information by year (n2,494).
	3.3.Association between signals and claim counts

	Figure 1Histograms of telematic information recorded in 2009 (n2,494).
	Table 2Counts of claims and driving signals (expressed in 500&znbsp;s km) in 2009, 2010 and�2011.
	3.4.Fitted models

	Figure 2Correlation matrix of telematic information recorded in 2009&#x2013;2011 (n2,494).
	Figure 3Correlation matrix of distance driven in 2009&#x2013;2011 (n2,494).
	Table 3Model results for panel data on claims and driving count signals, 2009&#x2013;2011.
	3.5.A posteriori corrections

	4.Discussion
	Figure 4Boxplots of the values of  E[ (Delta i ),, Hi,3 ] based on the multivariate model (left panel) and of  E[ (Delta i ),, Hi,3^ claim ] (right panel) obtained from the univariate model, according to the total number of claims Ni1 Ni2 Ni3  filed durin
	Figure 5Values of  E[ (Delta i ),, Hi,3 ] based on the multivariate model and of  E[ (Delta i ),, Hi,3^ claim ] obtained from the univariate model, according to the total number of claims filed during the observation period: Ni1 Ni2 Ni3 0 (top left), Ni1 
	ACKNOWLEDGEMENTS
	Figure 6Values of  E[ (Delta i ),, Hi,3 ] for an hypothetical male, mean-aged driver in function of the distance travelled in urban areas, based on the multivariate model and of  E[ (Delta i ),, Hi,3^ claim ] obtained from the univariate model, according 
	References


