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Abstract. An elaborated version of Zeeman's Catastrophe Machine (l), which
physically illustrates the butterfly catastrophe, is described and analyzed.

In (l) the cusp catastrophe was illustrated by an analysis of Zeeman's catastrophe
machine (2). A number of such illustrations of this two-dimensional catastrophe,
widely different in the forms of potential energy made use of, have been constructed.
However, machines to illustrate the higher catastrophes (swallowtail, butterfly and
three umbilics-see, for example, (3)) have been lacking. We describe here a develop-
ment of the Zeeman machine due to Bill Barit (4), the description of whose behaviour
involves a four-dimensional catastrophe.

Recall that the original machine consists of a wheel of radius, r, free to turn about the
origin 0, with two elastic strings of unstretched length P attached to a point B on its
edge. The lower has its second end at a fixed point A = (0, — a), the upper at a
variable point X = (x, y) (Fig. 1). The Butterfly Machine (Fig. 2) has a wheel mounted
similarly but controlled differently. In place of BX it has a double elastic string of
unstretched length J (thus doubling the force produced by a single string). In place
of BA, it has a pair of elastic strings BA+, BA _ of unstretched lengths P, Q attached to
points A+> A_ both at distance a from 0, angles + <f>, — <p respectively from the down-
ward y-axis. We specify P + Q = 4i2 and fix J = 2R to reduce dimension; it is clear
that when P = Q = J and 0 = 0, the system is equivalent to the Zeeman machine.
Figure 4a was drawn with J = R and 0 = 0. We consider only the region G of those
values (x, y, P, <p) for which all the strings are under tension for all 0.

In place of the two control variables x, y of (l), we now have four :x,y,PoxQ,<j>. With
all of these fixed, there are one or more values of 6 for which the wheel is in equi-
librium, (stable or unstable), and we are concerned with the singularities of the map

S = {(x,y,P,(j),d)\ wheel in equilibrium at 9} -»• G
x

(x,y,p,<p,6)

t Present address: Williams College, Department of Biology, Williamstown, Massachusetts
01267, U.S.A.
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Fig. 1. Diagram of the Mk I Zeeman Catastrophe Machine with single lower elastic. Disc,
radius r, centre O, distance a from lower elastic connexion attached at B, for further
details, see text.
Fig. 2. Configuration of the Higher Catastrophe Machine. Two elastic strings attached
at A+ and A_ respectively and at B on the disc centre O radius/i. Angle A+OA_ is 1<$>; for
further details, see text.

We assume the function V, assigning to each (x, y, P, <p, 6) the corresponding elastic
energy of the system, to be generic. The local diffeotype of the singularity we are con-
cerned with must then be that of one of the first four cuspoid catastrophes, since the
behaviour space of the system (the S1 values of d) is one-dimensional and C is four-
dimensional. The theorem is proved for this restricted case in (5); the most accessible
self-contained proof of the general, higher dimensional behaviour case which includes
the umbilic catastrophes is (6). The computer-generated pictures that follow make it
clear that the catastrophe concerned is the butterfly. (It would be of interest to have
the local equivalence involved displayed in detail, as has been done for the lower cusp
of the Zeeman machine (7)).

Now if we fix P, <j> and 6, the values that (x, y) may take are governed by the same
considerations as in (l). Their locus must thus be a conchoid of Nichomedes or, in the
variation analogous to the Mk II machine, straight lines. The somewhat more compli-
cated law for the downward force on the wheel gives a more complicated expression
for the intercept of the ' M k l l ' straight contour with the y-axis; thereafter the
^-contours for any (P, ^)-fixed 2-dimensional slice of G may be computed as before, the
bifurcation set again appearing as their envelope. This is illustrated for the Mkl type
(Figs. 3 and 4) and the Mkl l type (Kg. 5) for P = Q = 2R and several values of <j>.
J = 2R for Fig. 3; Figs. 4 and 5 were drawn with J = R but as mentioned in ((l),
p. 222) for a Mkll type machine J is purely a scale factor, so that this difference is
unimportant.

In each case it is clear that as <p increases from 0 the first change is that the bottom
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4R

Phi=1-30 radians

Fig. 3 (a-/). Diagram of equilibrium contours for the Mk I machine. J = P = Q = 2R;
<j) takes the values (a) 0-00 radians, (6) 0-50 radians, (c) 0-75 radians, (d) 0-85 radians,
(e) 0-95 radians, and (/) 1-30 radians, respectively; for further details, see text.

cusp (labelled B in Fig. 6) exfoliates into a complex of three cusps Bx, B2, B3 corre-
sponding to the effect of A becoming negative on the B = 0, (C, Z))-plane diagrams of
Fig. 7 (taken from (3), p. 21). This produces a region in which, instead of the two maxima
and two minima possessed by the wheel for control points inside the original four-
cusped area, it now has three of each. With the control point held in this region, then,
the wheel has three stable equilibria. The next development is that this region increases
in size, until its boundary PSBXQ meets the rest of the bifurcation set. Succeeding
changes then differ for the two machines: Fig. 3 shows no change in topological type up
to <j> = 1-30, but another butterfly catastrophe is apparent in Fig. 5. A first look at
Fig. 5 suggests that the changes simply reverse, but in fact the curves labelled B^Bt,
B1BZ in Fig. 6 cross TL, TR, so that the 3-stable equilibria region K now has T as its
upper cusp. K then dwindles, to vanish at a second butterfly point where a new cusp B'
appears.
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4R

(<?) Phi=0-90 radians

Fig. 4 (a — e). Diagram of equilibrium contours for the Mk I machine J = S,P = Q = 2R.
<j> takes the values (a) 0-00 radians, (b) 0-70 radians, (c) 0'80 radians, (d) 0-85 radians,
(e) 0-90 radians; for further details, see text.

The situation now reached differs more from the <f> = 0 one by somewhat more than
the 'turning upside down' that a comparison of Figs. 5a, 51 would suggest. Cusps T
and B are ' standard' cusps, involving a sheet of minima folding over itself, to produce
a layer of maxima between two of minima; L and R are ' dual' cusps, with the role of
maxima and minima reversed. The phenomenology of these two situations is very
different: suppose in Fig. 7 the control point is moved around the circle C, starting at
point / . If the cusp is a standard one, the result will be a jump increase in a; as the point
passes J, if x started in the lower of its stable equilibria at / , followed by a steady
decrease as we move around the circle until it reaches J and jumps again. (This
illustrates the way a cusp can model the governing of a jump process by a smooth one;
for example if dxjdt is interpreted as electrical potential, a steady cyclic change around
C produces an output of regularly spaced ' spike' signals in the manner of a nerve cell.)
If the cusp is of the dual type, with the control point at / the only stable equilibrium
has x given by the middle layer. As we pass J, we leave the region of control values for
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(c) Phi=0-50 radians (d) Phi=0-60 radians

2R

2R

(e) Phi=0-65 radians ( / ) Phi=0:70 radians

2R

(g) Phi=0-75 radians (A) Phi=0-80 radians

Fig. 5. Continued on next page.
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R

<J) Phi=0-85 radians (j) Phi=0-90 radians

R

(k) Phi= 1-00 radians (0 Phi= 110 radians

Fig. 5. Diagram of equilibrium contours for the Mk II machine. J = R, P = Q = 2R.
<$> takes the values(a) 0-00 radians, (6) 0-30 radians, (c) 0-50 radians, (d) 0-60 radians, (e) 0-65
radians, (/) 0-70radians, (g) 0-75radians, (h) 0-80radians, (i) 0-85 radians, (j) 0-90radians,
(k) 1-00 radians, (I) 1-10 radians; for further details, see text.

(c)

(d) (e) (/)

Fig. 6. Showing the evolution of a typical butterfly outline generated by the projection
of the surface generated by the equilibrium contours of the Mk II machine (from Fig. 5).
For further details, see text.
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Behaviour
variable

Fig. 7. Showing the three-dimensional nature of the bottom cusp of Fig. 5 (a) and its
projection onto the space of control variables (modified in part from Woodcock and
Poston (2)).

which stable equilibria exist, and the value of # must jump out of the picture of Fig. 7
entirely. In general it will land in another sheet of the complete surface (cf. Fig. 3 of (l))
and never return it to its initial value. If C is a circle around the dual cusp L in Fig. 6 a,
say, entirely left of the y-axis, subsequent behaviour will involve no sudden changes at
all. (Physically, the wheel will jump out of its position with the point of attachment of
the strings to the right of the y-axis, and thereafter move gently up and down on the
left as the control goes around G.)

Now of the new cusps developed from B, as (j> increases, B2 and B3 are standard,
while Bx is dual. These retain their character, and the cusp B' into which T, L, R are
transformed at the second butterfly point is dual. Thus the net change from 6a to 6/
is topologically one of interchanging the two types of cusp.

Machines for other catastrophes. Since this catastrophe involves two continua of
swallowtails (cf. (3)), a suitable reduction of the machine to a three-dimensional con-
trol space lying in G and not including the butterfly point itself would serve as a
Swallowtail Machine. We thus have concrete physical examples of all four cuspoids
among Thorn's seven catastrophes (No. 1, the fold, being included in all other cata-
strophes as a section; or it may easily be given a machine to itself). An Elliptic,
Hyperbolic, or Parabolic Machine would be interesting to analyse; its behaviour would
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have to vary in a space of at least two dimensions, and be controlled through at least
three. Moreover, it is unlikely that its singularity structure would involve only one
highest-order singularity and the continua of lower-order ones organized by it. The
first machine invented to illustrate the cusp catastrophe, the Zeeman device (2),
illustrates it in four copies; several subsequent machines have had as many, though
simpler examples have been devised. Similarly, this machine involves more than one
butterfly catastrophe.

A Parabolic Machine would include examples of all the other catastrophes on Thorn's
list except the butterfly. (8).

Such machines, particularly if of reasonably simple construction, are of great value
in conveying a feel for the interaction of behaviour with this kind of geometry when
mathematicians are communicating with scientists from less abstract disciplines.

Added in proof. We learn that ' simultaneous mode design' in Civil Engineering
consists precisely of arranging catastrophes with two essential behaviour variables
(i.e. umbilic catastrophes), or even more. When an incomplete set of control (in this
context load and imperfection) parameters are used, ' catastrophe' may regain its
ordinary meaning. Thompson and Hunt, who have heuristically developed much of
Thom theory independently, give (9) elliptic and hyperbolic machines. The hyper-
bolic is more than just a concrete example like that analysed above; it is a principal
component in box girder bridges, and experimentally confirmed analysis predicts
that small structural imperfections can greatly reduce the load for which collapse
occurs.
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