Hostname: page-component-cb9f654ff-mwwwr Total loading time: 0 Render date: 2025-08-23T07:34:35.283Z Has data issue: false hasContentIssue false

Lifting properties and uniform regularity of lebesgue measures on topological spaces

Published online by Cambridge University Press:  26 February 2010

A. G. A. G. Babiker
Affiliation:
School of Mathematical Sciences, University of Khartoum, P.O. Box 321, Khartoum, Sudan.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (X, ℱ, μ) be a topological measure space with X a completely regular Hausdorff space and ℱ the σ-algebra of all μ-measurable sets, containing all the Baire sets of X. Consider the following two conditions on (X, ℱ, μ).

MSC classification

Information

Type
Research Article
Copyright
Copyright © University College London 1981

References

1.Babiker, A. G. A. G.. “On uniformly regular topological measure spaces”, Duke math. J., 43 (1976), 775789.CrossRefGoogle Scholar
2.Babiker, A. G. A. G.. “Uniform regularity of measures on compact spaces”, J. reine angew. Math., 289 (1977), 188198.Google Scholar
3.Babiker, A. G. A. G.. “Lebesgue measures on topological spaces”, Mathematika, 24 (1977), 5259.CrossRefGoogle Scholar
4.Bourbaki, N.. Éléments de Mathematique, Integration, Chap. 15 (Paris, 1956).Google Scholar
5.Fremlin, D.. “On two theorems of Mokobodzki”, privately circulated from Math, dept., University of Essex, Colchester, England.Google Scholar
6.Gillman, L. and Jerison, M.. Rings of Continuous Functions (New York, 1960).CrossRefGoogle Scholar
7.Graf, S.. “On the existence of strong liftings in second countable topological spaces”, Pacific J. Math., 58 (1975), 419426.CrossRefGoogle Scholar
8.Halmos, P. R.. Measure Theory (New York, 1955).Google Scholar
9.A., and Tulcea, C. Lonescu. Topics in the Theory of Liftings (Berlin-Heidelberg-New York, 1969).Google Scholar
10.Kelly, J.. General Topology (New York, 1955).Google Scholar
11.Knowles, J. D.. “Measures on topological spaces”, Proc. London Math. Soc, 17 (1967), 139156.CrossRefGoogle Scholar
12.Losert, V.. “A measure space without the strong lifting property”, Math. Ann., 239 (1979), 119128.CrossRefGoogle Scholar
13.Rochlin, V. A.. “On the fundamental ideas of measure theory”, Math. sb. (N.S.), 25 (67) (1949), 107150 (Russian). A.M.S. translation, 71 (1952) (English).Google Scholar
14.Schwartz, L.. Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (Tata inst. and Oxford U.P., 1973).Google Scholar
15.Varadarajan, V. S.. “Measures on topological spaces”, Math. sb. (N.S.), 55 (97) (1961), 33100 (Russian). A.M.S. translation, 48, 14-228 (English).Google Scholar