Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-16T09:54:56.338Z Has data issue: false hasContentIssue false

The p-adic generalization of the Thue-Siegel-Roth theorem

Published online by Cambridge University Press:  26 February 2010

D. Ridout
Affiliation:
Department of Mathematics, University College, London.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It was proved recently by Roth that if α is any real algebraic number, and κ > 2, then the inequality

has only a finite number of solutions in integers h and q, where q > 0 and (h, q) = 1. This remarkable result answered finally a question which had been only partially answered by the work of Thue and Siegel.

Information

Type
Research Article
Copyright
Copyright © University College London 1958

References

page 40 note † Mathematika, 2 (1955), 120. This paper will be referred to as R.CrossRefGoogle Scholar

page 40 note ‡ Math. Annalen, 107 (1933), 691730.CrossRefGoogle Scholar

page 40 note § See, for example, Waerden, van der, Moderne Algebra I (New York, 1953), 235243.Google Scholar

page 41 note † Loc. cit., Hilfsatz 5 and §18.

page 41 note ‡ Math. Annalen, 108 (1933), 37–55.

page 47 note ‡ Mahler, lco. cit., 701.